1
|
An S, Zhu Y, Sun J. Enantioselective N-H Bond Insertion Reaction of Anilines Enabled by Ruthenium and Chiral Phosphoric Acid Cooperative Catalysis. Org Lett 2024; 26:6214-6219. [PMID: 39018479 DOI: 10.1021/acs.orglett.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The enantioselective carbene insertion into N-H bonds of anilines has been realized by cooperative catalysis of ruthenium complexes and chiral phosphoric acids, providing the expected α-aryl glycines in moderate to good yields with high enantioselectivity. Typically, by slightly modifying the reaction conditions, this approach allows the N-H bond insertion reaction to be effective for both α-aryl and α-alkyl diazoacetates for the first time with high enantioselectivity (up to 96% and 95% ee, respectively).
Collapse
Affiliation(s)
- Shaoran An
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
3
|
Peng Q, Huang M, Xu G, Zhu Y, Shao Y, Tang S, Zhang X, Sun J. Asymmetric N-Alkylation of 1H-Indoles via Carbene Insertion Reaction. Angew Chem Int Ed Engl 2023; 62:e202313091. [PMID: 37819054 DOI: 10.1002/anie.202313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
An intermolecular enantioselective N-alkylation reaction of 1H-indoles has been developed by cooperative rhodium and chiral phosphoric acid catalyzed N-H bond insertion reaction. N-Alkyl indoles with newly formed stereocenter adjacent to the indole nitrogen atom are produced in good yields (up to 95 %) with excellent enantioselectivities (up to >99 % ee). Importantly, both α-aryl and α-alkyl diazoacetates are tolerated, which is extremely rare in asymmetric X-H (X=N, O, S et al.) and C-H insertion reactions. With this method, only 0.1 mol % of rhodium catalyst and 2.5 mol % of chiral phosphoric acid are required to complete the conversion as well as achieve the high enantioselectivity. Computational studies reveal the cooperative relay of rhodium and chiral phosphoric acid, and the origin of the chemo and stereoselectivity.
Collapse
Affiliation(s)
- Quanxin Peng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
4
|
Wang C, Sun J. Atroposelective Synthesis of N-N Axially Chiral Bipyrroles via Rhodium-Catalyzed C-H Insertion Reaction. Org Lett 2023. [PMID: 37366557 DOI: 10.1021/acs.orglett.3c01509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
An atroposelective synthesis of bipyrroles with an axially chiral N-N bond has been established via a rhodium-catalyzed C-H bond insertion reaction to provide the desired atropisomers in good yields (up to 97% yield) with good to excellent enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Changkai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Liu HF, Long L, Zhu ZQ, Wu TF, Zhang YR, Pan HP, Ma AJ, Peng JB, Wang YH, Gao H, Zhang XZ. Enantioselective synthesis of α,α-diarylketones by sequential visible light photoactivation and phosphoric acid catalysis. SCIENCE ADVANCES 2023; 9:eadg7754. [PMID: 37327329 DOI: 10.1126/sciadv.adg7754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Chiral ketones and their derivatives are useful synthetic intermediates for the synthesis of biologically active natural products and medicinally relevant molecules. Nevertheless, general and broadly applicable methods for enantioenriched acyclic α,α-disubstituted ketones, especially α,α-diarylketones, remain largely underdeveloped, owing to the easy racemization. Here, we report a visible light photoactivation and phosphoric acid-catalyzed alkyne-carbonyl metathesis/transfer hydrogenation one-pot reaction using arylalkyne, benzoquinone, and Hantzsch ester for the expeditious synthesis of α,α-diarylketones with excellent yields and enantioselectivities. In the reaction, three chemical bonds, including C═O, C─C, and C─H, are formed, providing a de novo synthesis reaction for chiral α,α-diarylketones. Moreover, this protocol provides a convenient and practical method to synthesize or modify complex bioactive molecules, including efficient routes to florylpicoxamid and BRL-15572 analogs. Computational mechanistic studies revealed that C-H/π interactions, π-π interaction, and the substituents of Hantzsch ester all play crucial roles in the stereocontrol of the reaction.
Collapse
Affiliation(s)
- Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Liang Long
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Teng-Fei Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yi-Rui Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
6
|
Chen Q, Huang T, Shao Y, Tang S, Sun J. Forming All-Carbon Quaternary Centers by Geminal Difunctionalization of Diazo Compounds with N,N-Disubstituted Anilines and Allylic Carbonates. J Org Chem 2023. [PMID: 36760174 DOI: 10.1021/acs.joc.2c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A novel three-component reaction of N,N-disubstituted anilines, diazo compounds, and allylic carbonates has been developed by using a rhodium-palladium dual catalysis, providing an effective protocol for the construction of tetrasubstituted esters bearing an all-carbon quaternary center as well as an allylic moiety in one pot.
Collapse
Affiliation(s)
- Qiang Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Tingzhong Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
7
|
Ge Z, Lu B, Teng H, Wang X. Efficient Synthesis of Diaryl Quaternary Centers by Rh(II)/Xantphos Catalyzed Relay C-H Functionalization and Allylic Alkylation. Chemistry 2023; 29:e202202820. [PMID: 36239082 DOI: 10.1002/chem.202202820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/06/2022]
Abstract
A three-component reaction of N, N-disubstituted aniline, α-diazo ester, and an allylic electrophile has been realized by [Rh(II)]2 /Xantphos catalysis, providing a direct access to various aniline derivatives bearing diaryl allylic quaternary centers in good yields. The synthetic utility of this protocol was demonstrated by facile derivatization of the products for preparation of biologically relevant molecules and structural scaffolds, which offers a high potential for increasing the molecular diversity. Mechanistic studies identified α, α-diarylacetate species as an active intermediate, thereby revealing the presence of a C(sp2 )-H functionalization of aniline derivatives/allylic alkylation cascade in this attractive catalytic transformation.
Collapse
Affiliation(s)
- Zhaoliang Ge
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China.,State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Bin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
8
|
Hua RY, Yu SF, Jie XT, Qiu H, Hu WH. Multicomponent Assembly of Complex Oxindoles by Enantioselective Cooperative Catalysis. Angew Chem Int Ed Engl 2022; 61:e202213407. [PMID: 36266979 DOI: 10.1002/anie.202213407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 11/22/2022]
Abstract
Chiral oxindoles are important chemical scaffolds found in many natural products, and their enantioselective synthesis thus attracts considerable attention. Highly diastereo- and enantioselective synthetic methods for constructing C3 quaternary oxindoles have been well-developed. However, the efficient synthesis of chiral 3-substituted tertiary oxindoles has been rarely reported due to the ease of racemization of the tertiary stereocenter via enolization. Therefore, we herein report on the multicomponent assembly (from N-aryl diazoamides, aldehydes, and enamines/indoles) of complex oxindoles by enantioselective cooperative catalysis. These reactions proceed under mild conditions and show broad substrate scope, affording the desired coupling products (>90 examples) with good to excellent stereocontrol. Additionally, this research also demonstrates the synthetic potential of this annulation by constructing the 6,6,5-tricyclic lactone core structure of Speradine A.
Collapse
Affiliation(s)
- Ru-Yu Hua
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Si-Fan Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Ting Jie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wen-Hao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Liu X, Tang Z, Si Z, Zhang Z, Zhao L, Liu L. Enantioselective
para
‐C(sp
2
)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid**. Angew Chem Int Ed Engl 2022; 61:e202208874. [DOI: 10.1002/anie.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xun‐Shen Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhi‐Yao Si
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhikun Zhang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lei Zhao
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
10
|
Liu XS, Tang Z, Si ZY, Zhang Z, Zhao L, Liu L. Enantioselective para‐C(sp2)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun-Shen Liu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhiqiong Tang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhi-Yao Si
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhikun Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lei Zhao
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lu Liu
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
11
|
Liu J, Li Q, Shao Y, Sun J. Atroposelective Synthesis of Axially Chiral C2-Arylindoles via Rhodium-Catalyzed Asymmetric C-H Bond Insertion. Org Lett 2022; 24:4670-4674. [PMID: 35730740 DOI: 10.1021/acs.orglett.2c01818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly efficient rhodium-catalyzed formal C-H insertion reaction between indoles and 1-diazonaphthoquinones has been established, providing a novel protocol for the atroposelective synthesis of axially chiral C2-arylindoles (up to 99:1 er) under mild reaction conditions. Typically, only 1 mol % of Rh2(S-PTTL)4 is used and the chelation group is not needed for this conversion.
Collapse
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiongya Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|