1
|
Verma P, Tasior M, Roy P, Meech SR, Gryko DT, Vauthey E. Excited-state symmetry breaking in quadrupolar pull-push-pull molecules: dicyanovinyl vs. cyanophenyl acceptors. Phys Chem Chem Phys 2023; 25:22689-22699. [PMID: 37602791 PMCID: PMC10467566 DOI: 10.1039/d3cp02810k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
A significant number of quadrupolar dyes behave as their dipolar analogues when photoexcited in polar environments. This is due to the occurrence of excited-state symmetry breaking (ES-SB), upon which the electronic excitation, initially distributed over the whole molecule, localises preferentially on one side. Here, we investigate the ES-SB properties of two A-D-A dyes, consisting of a pyrrolo-pyrrole donor (D) and either cyanophenyl or dicyanovinyl acceptors (A). For this, we use time-resolved vibrational spectroscopy, comparing IR absorption and femtosecond stimulated Raman spectroscopies. Although dicyanovinyl is a stronger electron-withdrawing group, ES-SB is not observed with the dicyanovinyl-based dye even in highly polar media, whereas it already takes place in weakly polar solvents with dyes containing cyanophenyl accepting groups. This difference is attributed to the large electronic coupling between the D-A branches in the former dye, whose loss upon symmetry breaking cannot be counterbalanced by a gain in solvation energy. Comparison with analogues of the cyanophenyl-based dye containing different spacers reveals that interbranch coupling does not so much depend on the distance between the D-A subunits than on the nature of the spacer. We show that transient Raman spectra probe different modes of these centrosymmetric molecules but are consistent with the transient IR data. However, lifetime broadening of the Raman bands, probably due to the resonance enhancement, may limit the application of this technique for monitoring ES-SB.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
2
|
Yu C, Fang X, Wu Q, Guo X, Chen N, Cheng C, Hao E, Jiao L. Synthesis and Spectral Properties of Aggregation-Induced Emission-Active Push-Pull Chromophores Based On Isoindole Scaffolds. Org Lett 2022; 24:4557-4562. [PMID: 35730791 DOI: 10.1021/acs.orglett.2c01659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new class of tailor-made push-pull isoindole fluorophores has been synthesized through the combination of Suzuki coupling and Knoevenagel reactions. The efficient synthetic strategy rendered the isoindole scaffold as the π-bridge and the isolation spacer and provided dyes bearing various types of electron donors and electron acceptors for manipulating their energy gaps and tuning their absorptions and emissions. Most of the N-alkylated isoindole dyes showed aggregation-induced emission behaviors suitable for bioimaging and nice solid-state emission with maxima up to 851 nm.
Collapse
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.,Postdoctoral Research Center of Suntex TEXTILE Technology Co, Ltd., Wuhu, Anhui 241200, China
| | - Xingbao Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Na Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Chao Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|