1
|
Laha RM, Aich S, Sarkar AK, Dutta T, Ghosh NN, Khamarui S, Maiti DK. New routes towards azomethine ylide generation from prolines to synthesize diverse N-heterocycles: a DFT supported endo-selective mechanism. Org Biomol Chem 2024; 22:7411-7424. [PMID: 39177485 DOI: 10.1039/d4ob01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Azomethine ylides are generated using either organocatalysts or metal catalysts via a ballet of decarboxylative C-N coupling choreographed by prolines. These strategies enable diastereoselective [3 + 2] cycloaddition, C-C coupling, and ring annulation, providing sustainable routes. The synthesized pyrrolizines and other heterocycles have potential applications in the development of crucial biomolecules and pharmaceuticals. The endoselectivity of the azomethine ylide is realized and supported through DFT calculations.
Collapse
Affiliation(s)
- Radha M Laha
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
- Department of Science & Humanities, Murshidabad Institute of Technology, West Bengal-742102, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Ankan Kumar Sarkar
- School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, West Bengal 741235, India
| | - Narendra Nath Ghosh
- Department of Chemistry, Pakuahat A.N.M. High School, Malda, West Bengal 732138, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College at Kalna-1, Purba Bardhhaman, 713405, India.
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Chen J, Yang X, Huang Y, Zheng Z, Li T. The Development of Aldehyde Catalytic System. Chem Asian J 2023; 18:e202300731. [PMID: 37755436 DOI: 10.1002/asia.202300731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Aldehyde catalysts have proven to be highly effective in facilitating and accelerating a wide range of challenging transformations in organic chemistry. This article is structured into three main sections, focusing on the utilization of aldehydes as organocatalysts, the aldehydes/transition metals catalytic systems, and photochemical initiators. Finally, we provide a concise summary of the advancements in this fascinating research field, offering our perspectives and insights.
Collapse
Affiliation(s)
- Jinli Chen
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Xiaoqun Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Zhiguo Zheng
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Tingting Li
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| |
Collapse
|
3
|
Li S, Wen YH, Song J, Gong LZ. Asymmetric redox benzylation of enals enabled by NHC/Ru cooperative catalysis. SCIENCE ADVANCES 2023; 9:eadf5606. [PMID: 37075106 PMCID: PMC10115414 DOI: 10.1126/sciadv.adf5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of general methods for asymmetric benzylation of prochiral carbon nucleophiles remains a challenge in organic synthesis. The merging of ruthenium catalysis and N-heterocyclic carbene (NHC) catalysis for asymmetric redox benzylation of enals has been achieved, which opens up strategic opportunities for the asymmetric benzylation reactions. A wide range of 3,3'-disubstituted oxindoles with a stereogenic quaternary carbon center widely existing in natural products and biologically interesting molecules is successfully obtained with excellent enantioselectivities [up to 99% enantiomeric excess (ee)]. The generality of this catalytic strategy was further highlighted by its successful application in the late-stage functionalization of oxindole skeletons. Furthermore, the linear correlation between ee values of NHC precatalyst and the product elucidated the independent catalytic cycle of either the NHC catalyst or the ruthenium complex.
Collapse
Affiliation(s)
- Shuai Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Hua Wen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
- Corresponding author. (L.-Z. G.); (J. S.)
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei 230026, China
- Corresponding author. (L.-Z. G.); (J. S.)
| |
Collapse
|
4
|
Wang DC, Yang TT, Qu GR, Guo HM. Substrate-Dependent Regioselectivity: Pd/PTC Cooperatively Catalyzed Domino Heck/Allylation of Allenamides with α-Carbon of Carbonyl Compounds. J Org Chem 2022; 87:14284-14298. [PMID: 36240155 DOI: 10.1021/acs.joc.2c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A Pd/phase-transfer catalyst cooperatively catalyzed domino Heck/allylation reaction is first reported, which represents interesting substrate-dependent regioselectivity. Under the same conditions, Ts-protected N-(2-iodophenyl)allenamides produced only linear allylation products, while Cbz, Ac, or Boc-protected N-(2-iodophenyl)allenamides and N-(2-iodobenzoyl)allenamides with various compounds generated branch allylation products with an exocylic C═C bond and two vicinal stereocenters. Up-scale syntheses and diverse fused cyclization transformations of products were then carried out. The enantioselective version for the domino process was studied.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ting-Ting Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Huo X, Li G, Wang X, Zhang W. Bimetallic Catalysis in Stereodivergent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210086. [DOI: 10.1002/anie.202210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xi Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
6
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
7
|
Huo X, Li G, Wang X, Zhang W. Bimetallic Catalysis in Stereodivergent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaohong Huo
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China 200240 Shanghai CHINA
| | - Guanlin Li
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xi Wang
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wanbin Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
8
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
9
|
Catalytic asymmetric Tsuji-Trost α-benzylation reaction of N-unprotected amino acids and benzyl alcohol derivatives. Nat Commun 2022; 13:2509. [PMID: 35523802 PMCID: PMC9076619 DOI: 10.1038/s41467-022-30277-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Catalytic asymmetric Tsuji–Trost benzylation is a promising strategy for the preparation of chiral benzylic compounds. However, only a few such transformations with both good yields and enantioselectivities have been achieved since this reaction was first reported in 1992, and its use in current organic synthesis is restricted. In this work, we use N-unprotected amino acid esters as nucleophiles in reactions with benzyl alcohol derivatives. A ternary catalyst comprising a chiral aldehyde, a palladium species, and a Lewis acid is used to promote the reaction. Both mono- and polycyclic benzyl alcohols are excellent benzylation reagents. Various unnatural optically active α-benzyl amino acids are produced in good-to-excellent yields and with good-to-excellent enantioselectivities. This catalytic asymmetric method is used for the formal synthesis of two somatostatin mimetics and the proposed structure of natural product hypoestestatin 1. A mechanism that plausibly explains the stereoselective control is proposed. The catalytic asymmetric benzylations of prochiral nucleophiles are very limited. Here, the authors disclose an asymmetric α−benzylation of N-unprotected amino acids with benzyl alcohol derivatives by a chiral aldehyde-involved catalytic system.
Collapse
|