1
|
Murakami R, Mori T, Murata K, Fuwa H. Total Synthesis of Exiguolide Stereoisomers: Impact of Stereochemical Permutation on Reactivity, Conformation, and Biological Activity. J Org Chem 2025; 90:753-767. [PMID: 39718544 DOI: 10.1021/acs.joc.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
(-)-Exiguolide is a marine macrolide natural product with potent anticancer activity. In this study, the total synthesis of exiguolide stereoisomers, (9R)-exiguolide, (9R,13S)-exiguolide, and (9R,13S,19R)-exiguolide, was achieved by capitalizing on our macrocyclization/transannular pyran cyclization strategy. The impact of the stereochemical permutation on the reactivity of advanced intermediates, the conformation of the macrocyclic skeleton, and the antiproliferative activity against human cancer cells were investigated in detail. The total synthesis of (9R,13S)-exiguolide and (9R,13S,19R)-exiguolide was completed in much the same way as that of the parent natural product using stereoisomeric building blocks. Nevertheless, the reactivity of the (9R,13S)- and (9R,13S,19R)-series of intermediates in macrocyclic ring-closing metathesis and transannular pyran-forming reactions was significantly different from that of naturally configured counterparts. The conformation of exiguolide stereoisomers, deduced by means of NMR spectroscopic analysis and DFT calculations, was clearly different from that of the parent natural product. Evaluation of the antiproliferative activity of exiguolide and its stereoisomers suggested the importance of the stereochemistry of the macrocyclic skeleton.
Collapse
Affiliation(s)
- Reika Murakami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomo Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Munir R, Zahoor AF, Anjum MN, Mansha A, Irfan A, Chaudhry AR, Irfan A, Kotwica-Mojzych K, Glowacka M, Mojzych M. Yamaguchi esterification: a key step toward the synthesis of natural products and their analogs-a review. Front Chem 2024; 12:1477764. [PMID: 39464384 PMCID: PMC11503016 DOI: 10.3389/fchem.2024.1477764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The Yamaguchi reagent, based on 2,4,6-trichlorobenzoyl chloride (TCBC) and 4-dimethylaminopyridine (DMAP), is an efficient tool for conducting the intermolecular (esterification) reaction between an acid and an alcohol in the presence of a suitable base (Et3N or i Pr2NEt) and solvent (THF, DCM, or toluene). The Yamaguchi protocol is renowned for its ability to efficiently produce a diverse array of functionalized esters, promoting high yields, regioselectivity, and easy handling under mild conditions with short reaction times. Here, the recent utilization of the Yamaguchi reagent was reviewed in the synthesis of various natural products such as macrolides, terpenoids, polyketides, peptides, and metabolites.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Department of Basic Sciences, Department of Histology, Embriology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Glowacka
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| | - Mariusz Mojzych
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| |
Collapse
|
3
|
Masuda T, Ohyama K, Yoshimura A, Fuwa H. Total Synthesis of (-)-Enigmazole A by the Macrocyclization/Transannular Pyran Cyclization Strategy. Org Lett 2024; 26:2045-2050. [PMID: 38421804 DOI: 10.1021/acs.orglett.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An 18-step synthesis of (-)-enigmazole A is herein disclosed. The present synthesis is based on a modular assembly of three building blocks of similar complexity, a macrocyclic ring-closing metathesis to forge the 18-membered macrocyclic skeleton, and a desilylative transannular oxa-Michael addition for stereoselective construction of the 2,6-cis-substituted tetrahydropyran ring.
Collapse
Affiliation(s)
- Taisei Masuda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551, Japan
| | - Kyoya Ohyama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551, Japan
| | - Atsushi Yoshimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Wada Y, Usov PM, Chan B, Mukaida M, Ohmori K, Ando Y, Fuwa H, Ohtsu H, Kawano M. Atomic-resolution structure analysis inside an adaptable porous framework. Nat Commun 2024; 15:81. [PMID: 38167264 PMCID: PMC10762011 DOI: 10.1038/s41467-023-44401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
We introduce a versatile metal-organic framework (MOF) for encapsulation and immobilization of various guests using highly ordered internal water network. The unique water-mediated entrapment mechanism is applied for structural elucidation of 14 bioactive compounds, including 3 natural product intermediates whose 3D structures are clarified. The single-crystal X-ray diffraction analysis reveals that incorporated guests are surrounded by hydrogen-bonded water networks inside the pores, which uniquely adapt to each molecule, providing clearly defined crystallographic sites. The calculations of host-solvent-guest structures show that the guests are primarily interacting with the MOF through weak dispersion forces. In contrast, the coordination and hydrogen bonds contribute less to the total stabilization energy, however, they provide highly directional point interactions, which help align the guests inside the pore.
Collapse
Affiliation(s)
- Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Pavel M Usov
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki-shi, Nagasaki, 852-8521, Japan
| | - Makoto Mukaida
- Asahi Kasei Pharma Corporation, 632-1 Mifuku Izunokuni, Shizuoka, 410-2321, Japan
| | - Ken Ohmori
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshio Ando
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
5
|
Rodríguez-Berríos RR, Ríos-Delgado AM, Perdomo-Lizardo AP, Cardona-Rivera AE, Vidal-Rosado ÁG, Narváez-Lozano GA, Nieves-Quiñones IA, Rodríguez-Vargas JA, Álamo-Diverse KY, Lebrón-Acosta N, Medina-Berríos N, Rivera-Lugo PS, Avellanet-Crespo YA, Ortiz-Colón YW. Extraction, Isolation, Characterization, and Bioactivity of Polypropionates and Related Polyketide Metabolites from the Caribbean Region. Antibiotics (Basel) 2023; 12:1087. [PMID: 37508183 PMCID: PMC10376297 DOI: 10.3390/antibiotics12071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The Caribbean region is a hotspot of biodiversity (i.e., algae, sponges, corals, mollusks, microorganisms, cyanobacteria, and dinoflagellates) that produces secondary metabolites such as polyketides and polypropionates. Polyketides are a diverse class of natural products synthesized by organisms through a biosynthetic pathway catalyzed by polyketide synthase (PKS). This group of compounds is subdivided into fatty acids, aromatics, and polypropionates such as macrolides, and linear and cyclic polyethers. Researchers have studied the Caribbean region to find natural products and focused on isolation, purification, structural characterization, synthesis, and conducting biological assays against parasites, cancer, fungi, and bacteria. These studies have been summarized in this review, including research from 1981 to 2020. This review includes about 90 compounds isolated in the Caribbean that meet the structural properties of polyketides. Out of 90 compounds presented, 73 have the absolute stereochemical configuration, and 82 have shown biological activity. We expect to motivate the researchers to continue exploring the Caribbean region's marine environments to discover and investigate new polyketide and polypropionate natural products.
Collapse
Affiliation(s)
- Raúl R. Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan PR 00931-3346, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kumar H, Sharma K. Chitosan catalyzed synthesis and mechanistic study of Steroidal 2H-Pyran ring formation. Steroids 2023; 196:109243. [PMID: 37116637 DOI: 10.1016/j.steroids.2023.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
A simple and convenient method is reported for the preparation of steroidal 2H-pyran 2 by reacting 3β-acetoxy cholest-5-ene-7-one 1 with N-benzyl-2-cyanoacetamide in presence of chitosan, a green and heterogeneous catalyst. The product 2 was characterized by using NMR (1H and 3C), IR, and mass spectroscopy. The mechanism of 2H-pyran ring formation is described by employing theoretical B3LYP/6-31G (d) density functional method. The reaction undergoes via formation of two intermediates A and B, and each intermediate undergoes through a transition state TS1 and TS2. The molecular properties like relative energy and FMO analysis were used to explain the mechanism of the reaction. The HOMOs and LUMOs were found in support of the present reaction mechanism. The stability of all the calculated structures which includes reactant (1a), intermediates (A and B), product (2a) as well as TS1 and TS2 transition states, was supported by calculating their energy minima and fundamental frequencies.
Collapse
Affiliation(s)
- Himanshi Kumar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, INDIA
| | - Kamlesh Sharma
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, INDIA.
| |
Collapse
|
7
|
Masiuk US, Faletrov YV, Kananovich DG, Mineyeva IV. Stereodivergent Assembly of 2,6- cis- and - trans-Tetrahydropyrans via Base-Mediated Oxa-Michael Cyclization: The Key Role of the TMEDA Additive. J Org Chem 2023; 88:355-370. [PMID: 36495268 DOI: 10.1021/acs.joc.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereodivergent synthesis of cis- and trans-2,6-disubstituted tetrahydropyrans (THPs) via sodium hexamethyldisilazide-promoted oxa-Michael cyclization of (E)-ζ-hydroxy α,β-unsaturated esters is presented. The cyclization affords the kinetically favored trans-THPs with high stereoselectivity (dr up to 93:7) at a low temperature (-78 °C), while the room-temperature reaction does not produce the thermodynamically preferred cis-THPs as major products and occurs with poor stereocontrol. The addition of tetramethylethylenediamine (TMEDA) significantly improves the stereochemical outcome of the room-temperature cyclization and allows attaining high cis-selectivity (dr up to 99:1). The remarkable effect of TMEDA indicates that the sodium cation plays an important role in controlling the stereoselectivity of the thermodynamically driven process, that is, complexation of the cation with the cyclization products results in diminished selectivity. DFT calculations support this conclusion, indicating a greater difference in Gibbs energies of sodium-free cis- and trans-enolates compared to the respective sodium chelate complexes. The synthetic utility of the method has been demonstrated by the formal syntheses of (+)-Neopeltolide and (-)-Diospongin B and the total synthesis of (-)-Diospongin A.
Collapse
Affiliation(s)
- Uladzimir S Masiuk
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Yaroslav V Faletrov
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| | - Dzmitry G Kananovich
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Iryna V Mineyeva
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| |
Collapse
|