1
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024; 22:8755-8763. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Li W, Zhang R, Zhou N, Lu J, Fu N. Dual transition metal electrocatalysis enables selective C(sp 3)-C(sp 3) bond cleavage and arylation of cyclic alcohols. Chem Commun (Camb) 2024; 60:11714-11717. [PMID: 39318170 DOI: 10.1039/d4cc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a dual transition metal electrocatalytic approach for C(sp3)-C(sp3) bond cleavage and arylation of cyclic alcohols, providing an efficient and sustainable method for site-specific arylation of ketones. The reaction involves electrophotochemical cerium-catalysed generation of alkoxyl radicals from readily accessible alcohols. Subsequently, homolytic cleavage of the β-C-C bond leads to the generation of carbon-centered radicals that could be effectively utilized by nickel catalysis powered by cathode reduction to deliver the remote arylated ketone products.
Collapse
Affiliation(s)
- Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ruipu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Naifu Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Huang T, Du P, Cheng X, Lin YM. Manganese Complexes with Consecutive Mn(IV) → Mn(III) Excitation for Versatile Photoredox Catalysis. J Am Chem Soc 2024; 146:24515-24525. [PMID: 39079011 DOI: 10.1021/jacs.4c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Manganese complexes stand out as promising candidates for photocatalyst design, attributed to their eco- and biocompatibility, versatile valence states, and capability for facilitating multiple electronic excitations. However, several intrinsic constraints, such as inadequate visible light response and short excited-state lifetimes, hinder effective photoinduced electron transfer and impede photoredox activation of substrates. To overcome this obstacle, we have developed a class of manganese complexes featuring boron-incorporated N-heterocyclic carbene ligands. These complexes enable prolonged excited-state durations encapsulating both Mn(IV) and Mn(III) oxidation stages, with lifetimes reaching microseconds for Mn(IV) and nanoseconds for Mn(III), concurrently exhibiting robust redox capabilities. They efficiently catalyze direct, site-selective cross-couplings between diverse arenes and aryl bromides, at a low catalyst loading of 0.5 mol %. Their proficiency spans an extensive array of substrates including both highly electron-rich and electron-deficient molecules, which underscore the superior performance of these manganese complexes in tackling intricate transformations. Furthermore, the versatility of these complexes is further highlighted by their successful applications in various photochemical transformations, encompassing reductive cross-couplings for the formation of C-P, C-B, C-S and C-Se bonds, alongside oxidative couplings for creating C-N bonds. This study sheds light on the distinctive photoredox properties and the remarkable catalytic flexibility of manganese complexes, highlighting their immense potential to drive progress in photochemical synthesis and green chemistry applications.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pangang Du
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiuliang Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
5
|
Hua R, Wang Q, Yin H, Chen FX. Organophotocatalytic Remote Thiocyanation Reaction via Ring-Opening Functionalization of Cycloalkanols. Chemistry 2024; 30:e202400453. [PMID: 38634800 DOI: 10.1002/chem.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.
Collapse
Affiliation(s)
- Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
6
|
Zhao L, Hu P, Tian J, Zhang X, Yang C, Guo L, Xia W. Electrochemical Deconstructive and Ring-Expansion Functionalization of Unstrained Cycloalkanols. Org Lett 2024; 26:4882-4886. [PMID: 38815060 DOI: 10.1021/acs.orglett.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
An efficient and sustainable electrochemical method for the synthesis of cyclic ethers and acyclic aldehydes from alkanols has been reported. This strategy has been successfully applied to cycloalkanols bearing different ring sizes and different types of nucleophiles. In addition, mechanistic investigations show that the reactions undergo sequential processes, including anodic oxidation, β-scission, and nucleophilic addition. This method provides a new synthetic approach to constructing cyclic ethers and terminal aldehydes from cycloalkanols and nucleophiles.
Collapse
Affiliation(s)
- Lulu Zhao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Pengwei Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jian Tian
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
He M, Shi C, Luo M, Yang C, Guo L, Zhao Y, Xia W. Visible-Light-Driven Multicomponent Diamination and Oxyamination of Alkene. J Org Chem 2024; 89:1967-1979. [PMID: 38241611 DOI: 10.1021/acs.joc.3c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we describe an effective method for the synthesis of 2-alkoxyamides and 1,2-diamines through visible-light-mediated difunctionalization of alkenes. N-Aminopyridinium salts were employed as appropriate precursors to generate key amidyl radical intermediates via a photoinduced single-electron transfer (SET) process. The amidyl radicals would react with alkenes, followed by oxidation and nucleophilic addition. Excellent functional group tolerance and good yields demonstrate the synthetic potential of this transformation.
Collapse
Affiliation(s)
- Mengping He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chengcheng Shi
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengqi Luo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Wang XH, Xue YW, Bai CY, Wang YB, Wei XH, Su Q. Three-Component Direct Phosphorylation of Aldehydes and Alkylation of Ketones: Synthesis of γ-Ketophosphine Oxides under Acidic Conditions. J Org Chem 2023; 88:16216-16228. [PMID: 37967376 DOI: 10.1021/acs.joc.3c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Chun-Yuan Bai
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| |
Collapse
|
9
|
Zhan JL, Zhu L, Bai JN, Liu JB, Zhang SH, Xie YQ, Hu BM, Wang Y, Han WJ. Transition metal-free [3 + 3] annulation of cyclopropanols with β-enamine esters to assemble nicotinate derivatives. Org Biomol Chem 2023; 21:8984-8988. [PMID: 37937487 DOI: 10.1039/d3ob01662e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A metal-free and efficient approach for the synthesis of structurally important nicotinates through 4-HO-TEMPO-mediated [3 + 3] annulation of cyclopropanols with β-enamine esters is presented. This protocol features high atom efficiency, green waste, simple operation and broad substrate scope. Moreover, the experiments of gram-scale synthesis and recovery of oxidants make this strategy more sustainable and practical.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Jia-Nan Bai
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Jian-Bo Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Shi-Han Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yao-Qiang Xie
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Bo-Mei Hu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Yang Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Wen-Jun Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| |
Collapse
|
10
|
Jang Y, Deng W, Sprague IS, Lindsay VNG. Divergent Synthesis of β-Fluoroamides via Silver-Catalyzed Oxidative Deconstruction of Cyclopropanone Hemiaminals. Org Lett 2023; 25:5389-5394. [PMID: 37413978 PMCID: PMC10829026 DOI: 10.1021/acs.orglett.3c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
An expedient approach for the synthesis of challenging β-fluoroamides from readily accessible cyclopropanone equivalents is reported. Following the addition of pyrazole used here as a transient leaving group, silver-catalyzed regiospecific ring-opening fluorination of the resulting hemiaminal leads to a β-fluorinated N-acylpyrazole intermediate reactive to substitution with amines, ultimately affording β-fluoroamides. The process could also be extended to the synthesis of β-fluoroesters and γ-fluoroalcohols via the addition of alcohols or hydrides as terminal nucleophiles, respectively.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Weixia Deng
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Ivan S. Sprague
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N. G. Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
El Gehani AAMA, Maashi HA, Harnedy J, Morrill LC. Electrochemical generation and utilization of alkoxy radicals. Chem Commun (Camb) 2023; 59:3655-3664. [PMID: 36877137 DOI: 10.1039/d3cc00302g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
This highlight summarises electrochemical approaches for the generation and utilization of alkoxy radicals, predominantly focusing on recent advances (2012-present). The application of electrochemically generated alkoxy radicals in a diverse range of transformations is described, including discussion on reaction mechanisms, scope and limitations, in addition to highlighting future challenges in this burgeoning area of sustainable synthesis.
Collapse
Affiliation(s)
- Albara A M A El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
12
|
Harnedy J, Maashi HA, El Gehani AAMA, Burns M, Morrill LC. Deconstructive Functionalization of Unstrained Cycloalkanols via Electrochemically Generated Aromatic Radical Cations. Org Lett 2023; 25:1486-1490. [PMID: 36847269 PMCID: PMC10012273 DOI: 10.1021/acs.orglett.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein we report an electrochemical approach for the deconstructive functionalization of cycloalkanols, where various alcohols, carboxylic acids, and N-heterocycles are employed as nucleophiles. The method has been demonstrated across a broad range of cycloalkanol substrates, including various ring sizes and substituents, to access useful remotely functionalized ketone products (36 examples). The method was demonstrated on a gram scale via single-pass continuous flow, which exhibited increased productivity in relation to the batch process.
Collapse
Affiliation(s)
- James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Albara A M A El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Matthew Burns
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
13
|
Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu YQ, Cao ZY. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Org Lett 2023; 25:581-586. [PMID: 36695525 DOI: 10.1021/acs.orglett.2c03956] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianwen Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - WenJie Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qian Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China.,Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Jiangsu 213164, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Yao J, Hu D, Zhang JQ, Zhang Y, Ma X, Liu J, Wang J, Ni B, Ren H. Ring-Opening Selenation of Cyclopropanol for the Selective Synthesis of β-Hydroxy-Substituted Selenylated Ketones. J Org Chem 2022; 87:14685-14694. [DOI: 10.1021/acs.joc.2c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Yao
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yili Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Xinyi Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiang Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
15
|
Wang J, Yao W, Hu D, Qi X, Zhang JQ, Ren H. NaOH/BEt3 Catalyzed Regioselective Hydroboration of Epoxides with HBpin to Secondary Alcohols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiali Wang
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Wubin Yao
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Dandan Hu
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Xinxin Qi
- Zhejiang Sci-Tech University Department of Chemistry CHINA
| | - Jun-Qi Zhang
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Hongjun Ren
- Taizhou University Advanced Research Institute and Department of Chemistry 1139 Shifu Avenue 318012 Taizhou CHINA
| |
Collapse
|