1
|
Ponomarev AV, Danilkina NA, Okuneva JS, Vidyakina AA, Khmelevskaya EA, Bunev AS, Rumyantsev AM, Govdi AI, Suarez T, Alabugin IV, Balova IA. Facile synthesis of diiodoheteroindenes and understanding their Sonogashira cross-coupling selectivity for the construction of unsymmetrical enediynes. Org Biomol Chem 2024; 22:4096-4107. [PMID: 38695707 DOI: 10.1039/d4ob00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Electrophile-promoted cyclizations of functionalized alkynes offer a useful tool for constructing halogen-substituted heterocycles primed for further derivatization. Preinstallation of an iodo-substituent at the alkyne prior to iodo-cyclization opens access to ortho di-iodinated heterocyclic precursors for the preparation of unsymmetrical heterocycle-fused enediynes. This general approach was used to prepare 2,3-diiodobenzothiophene, 2,3-diiodoindole, and 2,3-diiodobenzofuran, a useful family of substrates for systematic studies of the role of heteroatoms on the regioselectivity of cross-coupling reactions. Diiodobenzothiophene showed much higher regioselectivity for Sonogashira cross-coupling at C2 than diiodoindole and diiodobenzofuran. As a result, benzothiophene can be conveniently involved in a one-pot sequential coupling with two different alkynes, yielding unsymmetrical benzothiophene-fused enediynes. On the other hand, the Sonogashira reaction of diiodoindole and diiodobenzofuran formed considerable amounts of di-substituted enediynes in addition to the monoalkyne product by coupling at C2. Interestingly, no C3-monocoupling products were observed for all of the diiodides, suggesting that the incorporation of the 1st alkyne at C2 activates the C3 position for the 2nd coupling. Additional factors affecting regioselectivity were detected, discussed and connected, through computational analysis, to transmetalation being the rate-determining step for the Sonogashira reaction. Several enediynes synthesized showed cytotoxic activity, which is not associated with DNA strand breaks typical of natural enediyne antibiotics.
Collapse
Affiliation(s)
- Alexander V Ponomarev
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Julia S Okuneva
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Aleksandra A Vidyakina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Ekaterina A Khmelevskaya
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Alexander S Bunev
- Medicinal Chemistry Center, Tolyatti State University, 445020 Tolyatti, Russia
| | - Andrey M Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Thomas Suarez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| |
Collapse
|
2
|
Functionalized 10-Membered Aza- and Oxaenediynes through the Nicholas Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186071. [PMID: 36144808 PMCID: PMC9502870 DOI: 10.3390/molecules27186071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The scope and limitations of the Nicholas-type cyclization for the synthesis of 10-membered benzothiophene-fused heterocyclic enediynes with different functionalities were investigated. Although the Nicholas cyclization through oxygen could be carried out in the presence of an ester group, the final oxaenediyne was unstable under storage. Among the N-type Nicholas reactions, cyclization via an arenesulfonamide functional group followed by mild Co-deprotection was found to be the most promising, yielding 10-membered azaendiynes in high overall yields. By contrast, the Nicholas cyclization through the acylated nitrogen atom did not give the desired 10-membered cycle. It resulted in the formation of a pyrroline ring, whereas cyclization via an alkylated amino group resulted in a poor yield of the target 10-membered enediyne. The acylated 4-aminobenzenesulfonamide nucleophilic group was found to be the most convenient for the synthesis of functionalized 10-membered enediynes bearing a clickable function, such as a terminal triple bond. All the synthesized cyclic enediynes exhibited moderate activity against lung carcinoma NCI-H460 cells and had a minimal effect on lung epithelial-like WI-26 VA4 cells and are therefore promising compounds in the search for novel antitumor agents that can be converted into conjugates with tumor-targeting ligands.
Collapse
|