1
|
Li TZ, Wu SF, Wang NY, Hong CS, Zhang YC, Shi F. Catalytic Atroposelective Synthesis of N-N Axially Chiral Indolylamides. J Org Chem 2024; 89:12559-12575. [PMID: 39189641 DOI: 10.1021/acs.joc.4c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The catalytic atroposelective synthesis of N-N axially chiral indolylamides was established via dynamic kinetic resolution, which makes use of chiral Lewis base-catalyzed asymmetric acylation of N-acylaminoindoles as a new type of platform molecule with anhydrides. By this strategy, a series of N-N axially chiral indolylamides were synthesized in overall good yields (up to 98%) with excellent enantioselectivities (up to 99% ee). Moreover, some of these N-N axially chiral indolylamides display some extent of anticancer activity, which demonstrates their potential application in medicinal chemistry. Therefore, this work has not only provided a new strategy for the synthesis of N-N axially chiral monoaryl indoles but also offered a new member of N-N axially chiral monoaryl indoles with configurational stability and promising application, thereby solving the challenges in atroposelective synthesis and application of N-N axially chiral monoaryl indoles.
Collapse
Affiliation(s)
- Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Chen-Shengping Hong
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Nimmo AJ, Kasten K, White G, Roeterdink J, McKay AP, Cordes DB, Smith AD. One-Pot Access to Functionalised Malamides via Organocatalytic Enantioselective Formation of Spirocyclic β-Lactone-Oxindoles and Double Ring-Opening. Molecules 2024; 29:3635. [PMID: 39125040 PMCID: PMC11313722 DOI: 10.3390/molecules29153635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Malamides (diamide derivatives of malic acid) are prevalent in nature and of significant biological interest, yet only limited synthetic methods to access functionalised enantiopure derivatives have been established to date. Herein, an effective synthetic method to generate this molecular class is developed through in situ formation of spirocyclic β-lactone-oxindoles (employing a known enantioselective isothiourea-catalysed formal [2+2] cycloaddition of C(1)-ammonium enolates and isatin derivatives) followed by a subsequent dual ring-opening protocol (of the β-lactone and oxindole) with amine nucleophiles. The application of this protocol is demonstrated across twelve examples to give densely functionalised malamide derivatives with high enantio- and diastereo-selectivity (up to >95:5 dr and >99:1 er).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew David Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK; (A.J.N.); (K.K.); (G.W.); (J.R.); (A.P.M.)
| |
Collapse
|
3
|
Conboy A, Goodfellow AS, Kasten K, Dunne J, Cordes DB, Bühl M, Smith AD. De-epimerizing DyKAT of β-lactones generated by isothiourea-catalysed enantioselective [2 + 2] cycloaddition. Chem Sci 2024; 15:8896-8904. [PMID: 38873072 PMCID: PMC11168096 DOI: 10.1039/d4sc01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
An enantioselective isothiourea-catalysed [2 + 2] cycloaddition of C(1)-ammonium enolates with pyrazol-4,5-diones is used to construct spirocyclic β-lactones in good yields, excellent enantioselectivity (99 : 1 er) but with modest diastereocontrol (typically 70 : 30 dr). Upon ring-opening with morpholine or alternative nucleophilic amines and alcohols β-hydroxyamide and β-hydroxyester products are generated with enhanced diastereocontrol (up to >95 : 5 dr). Control experiments show that stereoconvergence is observed in the ring-opening of diastereoisomeric β-lactones, leading to a single product (>95 : 5 dr, >99 : 1 er). Mechanistic studies and DFT analysis indicate a substrate controlled Dynamic Kinetic Asymmetric Transformation (DyKAT) involving epimerisation at C(3) of the β-lactone under the reaction conditions, coupled with a hydrogen bond-assisted nucleophilic addition to the Si-face of the β-lactone and stereodetermining ring-opening. The scope and limitations of a one-pot protocol consisting of isothiourea-catalysed enantio-determining [2 + 2] cycloaddition followed by diastereo-determining ring-opening are subsequently developed. Variation within the anhydride ammonium enolate precursor, as well as N(1) and C(3) within the pyrazol-4,5-dione scaffold is demonstrated, giving a range of functionalised β-hydroxyamides with high diastereo- and enantiocontrol (>20 examples, up to >95 : 5 dr and >99 : 1 er) via this DyKAT.
Collapse
Affiliation(s)
- Aífe Conboy
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Joanne Dunne
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
4
|
Luis NR, Chung KK, Hickey MR, Lin Z, Beutner GL, Vosburg DA. Beyond Amide Bond Formation: TCFH as a Reagent for Esterification. Org Lett 2024; 26:2745-2750. [PMID: 37364890 DOI: 10.1021/acs.orglett.3c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In this Communication, an investigation of the combination of N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate (TCFH) and N-methylimidazole (NMI) for the synthesis of esters and thioesters is described. This work revealed the unique challenges of the reactions of less nucleophilic alcohols and more reactive thiols with the N-acyl imidazolium intermediate and led to the identification of general enabling conditions that provide high yields and selectivity for a range of alcohols and thiols.
Collapse
Affiliation(s)
- Nathaniel R Luis
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Kasey K Chung
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Matthew R Hickey
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ziqing Lin
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Gregory L Beutner
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David A Vosburg
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| |
Collapse
|
5
|
Wang L, Chen R, Wu S, Sun J, Han Y, Li W, Yan CG. Synthesis of Bis-Heterocycles Bearing Methyleneindole Motifs by Pd-Catalyzed Domino Reaction. J Org Chem 2024; 89:1941-1955. [PMID: 38261608 DOI: 10.1021/acs.joc.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A highly robust, general, and practically simple palladium-catalyzed domino bicyclization strategy is presented to synthesize nitrogen-containing bis-heterocycles bearing methylene indole motifs from alkyne-tethered carbamoyl chlorides and β,γ- or γ,δ-unsaturated hydrazones. The salient features of this transformation include broad substrate scope, good functional group tolerance, ease for scale-up, and convenient conversion.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruixin Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuaijie Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, P. R. China
| | - Chao-Guo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
6
|
Nimmo AJ, Bitai J, Young CM, McLaughlin C, Slawin AMZ, Cordes DB, Smith AD. Enantioselective isothiourea-catalysed reversible Michael addition of aryl esters to 2-benzylidene malononitriles. Chem Sci 2023; 14:7537-7544. [PMID: 37449062 PMCID: PMC10337745 DOI: 10.1039/d3sc02101g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Catalytic enantioselective transformations usually rely upon optimal enantioselectivity being observed in kinetically controlled reaction processes, with energy differences between diastereoisomeric transition state energies translating to stereoisomeric product ratios. Herein, stereoselectivity resulting from an unusual reversible Michael addition of an aryl ester to 2-benzylidene malononitrile electrophiles using an isothiourea as a Lewis base catalyst is demonstrated. Notably, the basicity of the aryloxide component and reactivity of the isothiourea Lewis base both affect the observed product selectivity, with control studies and crossover experiments indicating the feasibility of a constructive reversible Michael addition from the desired product. When this reversible addition is coupled with a crystallisation-induced diastereomer transformation (CIDT) it allows isolation of products in high yield and stereocontrol (14 examples, up to 95 : 5 dr and 99 : 1 er). Application of this process to gram scale, plus derivatisations to provide further useful products, is demonstrated.
Collapse
Affiliation(s)
- Alastair J Nimmo
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Claire M Young
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|