1
|
Pozhydaiev V, Paparesta A, Moran J, Lebœuf D. Iron(II)-Catalyzed 1,2-Diamination of Styrenes Installing a Terminal NH 2 Group Alongside Unprotected Amines. Angew Chem Int Ed Engl 2024; 63:e202411992. [PMID: 39016034 DOI: 10.1002/anie.202411992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
1,2-Diamination of alkenes represents an attractive way to generate differentiated vicinal diamines, which are prevalent motifs in biologically active compounds and catalysts. However, existing methods are usually limited in scope and produce diamines where one or both nitrogens are protected, adding synthetic steps for deprotection and further N-functionalization to reach a desired target. Furthermore, the range of amino groups that can be introduced at the internal position is fairly limited. Here we describe a 1,2-diamination of styrenes that directly installs a free amino group at the terminal position and a wide variety of unprotected nitrogen nucleophiles (primary or secondary alkyl or aromatic amines, sulfoximines, N-heterocycles, and ammonia surrogate) at the internal position. Two complementary sets of conditions encompass electronically activated and deactivated styrenes with diverse substitution patterns and functional groups. Moreover, this strategy can be extended to the 1,2-aminothiolation of styrenes.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Antonio Paparesta
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
2
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Yang LH, Liu XS, Liu C, Wang SY, Xie LY. Ring-Opening Sulfonylation of Cyclic Sulfonium Salts with Sodium Sulfinates under Transition-Metal- and Additive-Free Conditions. J Org Chem 2024; 89:12668-12680. [PMID: 39121341 DOI: 10.1021/acs.joc.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Incorporating a sulfonyl group into parent molecules has been shown to effectively improve their synthetic applications and bioactivities. In this study, we present a straightforward and practical approach for the ring-opening reaction of alkenyl-aryl sulfonium salts with sodium sulfinates to produce a range of sulfur-containing alkyl sulfones. This method offers the benefits of mild reaction conditions, easily accessible raw materials, wide substrate applicability, good functional group compatibility, and operational simplicity. Importantly, the resulting products can be readily converted into sulfoxides, sulfones, sulfoximines, and some heterocyclic compounds.
Collapse
Affiliation(s)
- Li-Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xin-Si Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Chu Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Si-Yu Wang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
4
|
Wu H, Wang J, Jing H, Zhang Z, Ou W, Su C. Base-Mediated Divergent Synthesis of Spiro-heterocycles Using Pronucleophiles and Ethylene via Thianthrenation. Org Lett 2024; 26:5415-5419. [PMID: 38917369 DOI: 10.1021/acs.orglett.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Spirocyclic compounds are abundant in biologically active products. However, the divergent synthesis of spirocyclic compounds using low-cost and abundant available starting materials remains a challenge. Herein, we report an effective method for producing spirocyclic motifs using a cyclic β-carbonyl ester or amide and ethylene via thianthrenation. This strategy highlights the exciting possibility of utilizing abundant ethylene as a C-2 synthon and allows regulating the core structure of the spirocyclic compound by simply altering the base type.
Collapse
Affiliation(s)
- Hongru Wu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jie Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhaofei Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
5
|
Zhou J, Wang Z, Xu H, Su M, Wen J. Synthesis of alkynyl sulfides via base-promoted nucleophilic ring-opening of α-bromostyrene sulfonium salt. Org Biomol Chem 2024; 22:2953-2957. [PMID: 38546108 DOI: 10.1039/d4ob00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
An efficient method for the synthesis of alkynyl sulfides via a C(sp3)-S bond cleavage of α-bromostyrene sulfonium salts has been developed. This base-promoted nucleophilic ring-opening pathway allows the preparation of diverse alkynyl sulfide compounds using tetramethylene sulfoxide as the sulfur source. The reaction proceeds with good functional group tolerance and could be applied to the late-stage functionalization of bioactive molecules and drugs. Furthermore, the synthetic utility of this method was demonstrated by a one-pot synthesis, scale-up reaction and further modification of various alkynyl sulfide products.
Collapse
Affiliation(s)
- Junqi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Ziyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Hanmiao Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Mengke Su
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
6
|
Liu J, Guo L, Chen Z, Guo Y, Zhang W, Peng X, Wang Z, Zeng YF. Photoredox-catalyzed unsymmetrical diamination of alkenes for access to vicinal diamines. Chem Commun (Camb) 2024; 60:3413-3416. [PMID: 38441256 DOI: 10.1039/d4cc00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A photoredox-catalyzed unsymmetrical diamination of alkenes by using N-aminopyridinium salts and nitriles as the amination reagents has been developed. Various vicinal diamines were obtained in moderate to excellent yields under mild reaction conditions. Furthermore, this protocol could be applied in the late-stage modification of pharmaceuticals and natural products. Preliminary mechanistic studies suggested that this methodology may undergo a radical pathway followed by a Ritter-type reaction.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lu Guo
- Department of Sports Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Wang Z, Shao Z, Wang C, Wen J. Base-Promoted Ring-Opening Hydroxylation of Cyclic Sulfonium Salts. J Org Chem 2024; 89:3084-3091. [PMID: 38335534 DOI: 10.1021/acs.joc.3c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Herein, we reported a general strategy for the synthesis of sulfur-containing primary alcohol derivatives by base-promoted ring-opening hydroxylation of cyclic sulfonium salts. A variety of sulfonium salts were successfully transformed into the desired hydroxylated products in moderate to excellent yields with good functional group tolerance. Moreover, the one-pot synthesis, scale-up reaction, and late-stage functionalization of complex molecules demonstrated the practicability of this synthetic protocol in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cheng Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
8
|
Zhu J, Sun J, Yan Y, Dong Z, Huang Y. Dithiolation of Alkenyl Sulfonium Salts with Arylthiols to Access 1,2-Dithioalkanes. J Org Chem 2023; 88:15767-15771. [PMID: 37922383 DOI: 10.1021/acs.joc.3c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
A dithiolation of alkenyl sulfonium salts with arylthiols is described, affording a series of 1,2-dithioalkanes in high yields. This protocol features mild and catalyst-free conditions and involves the formation of two C-S bonds sequentially via the regioselective addition of an arylthiol to the unsaturated C═C bonds, followed by the attack of another arylthiol to form 1,2-dithioalkanes exclusively.
Collapse
Affiliation(s)
- Jie Zhu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yifei Yan
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhuyong Dong
- Hangzhou Create Environment Energy and Technology Co. Ltd., Hangzhou, Zhejiang 311121, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
9
|
Nagamalla S, Thomas AA, Nirpal AK, Mague JT, Sathyamoorthi S. Ring Opening of Aziridines by Pendant Sulfamates Allows for Regioselective and Stereospecific Preparation of Vicinal Diamines. J Org Chem 2023; 88:15989-16006. [PMID: 37903411 PMCID: PMC10799289 DOI: 10.1021/acs.joc.3c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The ring opening of aziridines by pendant sulfamates is a viable strategy for the rapid preparation of vicinal diamines. Our reaction is compatible with both disubstituted cis- and trans-aziridines; unsubstituted, N-alkyl, and N-aryl sulfamates engage effectively. In all cases examined, the cyclization reaction is perfectly regioselective and stereospecific. Once activated, the product oxathiazinane heterocycles can be ring opened with a diverse range of nucleophiles.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Annu Anna Thomas
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Appasaheb K. Nirpal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
10
|
Wang S, Xu H, Zhang R, Zhang S, Chai Y, Yang B, Zhao J, Xu Y, Li P. Regioselective Synthesis of N-Vinyl Pyrazoles from Vinyl Sulfonium Salts with Diazo Compounds. Org Lett 2023; 25:6746-6750. [PMID: 37669415 DOI: 10.1021/acs.orglett.3c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Herein, we develop a base-promoted regioselective synthesis of N-vinyl pyrazoles from vinyl sulfonium salts with diazo compounds. This metal-free synthetic protocol provides an efficient and practical approach to diverse N-vinyl pyrazoles in good to excellent yields under mild conditions. The reaction appears to experience a [3 + 2] annulation of vinyl sulfonium salts and diazo anions rather than diazo compounds, followed by N-vinylation.
Collapse
Affiliation(s)
- Shichong Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Huayan Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ruoyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Siyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yun Chai
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Bingchuan Yang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yuanqing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
11
|
Holst DE, Dorval C, Winter CK, Guzei IA, Wickens ZK. Regiospecific Alkene Aminofunctionalization via an Electrogenerated Dielectrophile. J Am Chem Soc 2023. [PMID: 37023348 DOI: 10.1021/jacs.3c01137] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Modular strategies to rapidly increase molecular complexity have proven immensely synthetically valuable. In principle, transformation of an alkene into a dielectrophile presents an opportunity to deliver two unique nucleophiles across an alkene. Unfortunately, the selectivity profiles of known dielectrophiles have largely precluded this deceptively simple synthetic approach. Herein, we demonstrate that dicationic adducts generated through electrolysis of alkenes and thianthrene possess a unique selectivity profile relative to more conventional dielectrophiles. Specifically, these species undergo a single and perfectly regioselective substitution reaction with phthalimide salts. This observation unlocks an appealing new platform for aminofunctionalization reactions. As an illustrative example, we implement this new reactivity paradigm to address a longstanding synthetic challenge: alkene diamination with two distinct nitrogen nucleophiles. Studies into the mechanism of this process reveal a key alkenyl thianthrenium salt intermediate that controls the exquisite regioselectivity of the process and highlight the importance of proton sources in controlling the reactivity of alkenyl sulfonium salt electrophiles.
Collapse
Affiliation(s)
- Dylan E Holst
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Céline Dorval
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Casey K Winter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Kumar R, Khanna Y, Kaushik P, Kamal R, Khokhar S. Recent Advancements on Metal-Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chem Asian J 2023; 18:e202300017. [PMID: 36869415 DOI: 10.1002/asia.202300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The oxidative aminative vicinal difunctionalization of alkenes or related chemical feedstocks has emerged as sustainable and multipurpose strategies that can efficiently construct two -N bonds, and simultaneously prepare the synthetically fascinating molecules and catalysis in organic synthesis that typically required multi-step reactions. This review summarized the impressive breakthroughs on synthetic methodologies (2015-2022) documented especially over inter/intra-molecular vicinal diamination of alkenes with electron-rich or deficient diverse nitrogen sources. These unprecedented strategies predominantly involved iodine-based reagents/catalysts, which resent the interest of organic chemists due to their impressive role as flexible, non-toxic, and environmentally friendly reagents, resulting in a wide variety of synthetically useful organic molecules. Moreover, the information collected also describes the significant role of catalyst, terminal oxidant, substrate scope, synthetic applications, and their unsuccessful results to highlight the limitations. Special emphasis has been given to proposed mechanistic pathways to determine the key factors governing the issues of regioselectivity, enantioselectivity, and diastereoselectivity ratios.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Yugam Khanna
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Parul Kaushik
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| | - Shiwani Khokhar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| |
Collapse
|
13
|
Ye Y, Zhu J, Xie H, Huang Y. Rhodium‐Catalyzed Divergent Arylation of Alkenylsulfonium Salts with Arylboroxines. Angew Chem Int Ed Engl 2022; 61:e202212522. [DOI: 10.1002/anie.202212522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yun Ye
- College of Materials Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Jie Zhu
- College of Materials Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Hangzhou Zhejiang 310003 P. R. China
| | - Yinhua Huang
- College of Materials Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
14
|
Xu H, Zhang J, Zuo J, Wang F, Lü J, Hun X, Yang D. Recent Advances in Visible-Light-Catalyzed C—C Bonds and C—Heteroatom Bonds Formation Using Sulfonium Salts. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|