1
|
Yu YZ, Su HY, Zhuo CX. Anilines Formation via Molybdenum-Catalyzed Intermolecular Reaction of Ynones with Allylic Amines. Angew Chem Int Ed Engl 2024:e202412299. [PMID: 39255246 DOI: 10.1002/anie.202412299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The multi-substituted anilines are widely found in organic synthesis, medicinal chemistry and material science. The quest for robust and efficient methods to construct a diverse array of these compounds using readily accessible starting materials under simple reaction conditions is of utmost importance. Here, we report an unprecedented and efficient approach for the synthesis of 2,4-di and 2,4,6-trisubstituted anilines. With a simple molybdenum(VI) catalyst, a wide range of 2,4-di and 2,4,6-trisubstituted anilines were efficiently prepared in generally good to excellent yields from readily accessible ynones and allylic amines. The synthetic potential of this methodology was further underscored by its applications in several synthetic transformations, gram-scale reactions, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this aniline formation might involve a cascade of aza-Michael addition, [1,6]-proton shift, cyclization, dehydration, 6π-electrocyclization, and aromatization. This novel strategy provided a robust, simple, and modular approach for the syntheses of various valuable di- or trisubstituted anilines, some of which were otherwise challenging to access.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hong-Yi Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, P. R. China
| |
Collapse
|
2
|
Wang JL, Wu GY, Luo JN, Liu JL, Zhuo CX. Catalytic Intermolecular Deoxygenative Coupling of Carbonyl Compounds with Alkynes by a Cp*Mo(II)-Catalyst. J Am Chem Soc 2024; 146:5605-5613. [PMID: 38351743 DOI: 10.1021/jacs.3c14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Carbonyl is highly accessible and acts as an essential functional group in chemical synthesis. However, the direct catalytic deoxygenative functionalization of carbonyl compounds via a putative metal carbene intermediate is a formidable challenge due to the requirement of a high activation energy for the cleavage of strong C═O double bonds. Here, we report a class of bench stable and readily available Cp*Mo(II)-complexes as efficient deoxygenation catalysts that could catalyze the direct intermolecular deoxygenative coupling of carbonyl compounds with alkynes. Enabled by this powerful Cp*Mo(II)-catalyst, various valuable heteroarenes (10 different classes) were obtained in generally good yields and remarkable chemo- and regioselectivities. Mechanistic studies suggested that this reaction might proceed via a sequence of C═O double bonds cleavage, carbene-alkyne metathesis, cyclization, and aromatization processes. This strategy not only provided a general catalytic platform for the rapid preparation of heteroarenes but also opened a new window for the applications of Cp*Mo(II)-catalysts in organic synthesis.
Collapse
Affiliation(s)
- Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guan-Yu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jian-Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jun-Long Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Liu Y, Zhang S, Feng X, Yu X, Yamamoto Y, Bao M. Direct synthesis of phenanthrenyl triflates from 1-biphenylyl-2-diazo-2-aryl ketones and triflic anhydride. Org Biomol Chem 2024; 22:1141-1145. [PMID: 38214226 DOI: 10.1039/d3ob02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A strategy for direct synthesis of phenanthrenyl triflates from 1-biphenylyl-2-diazo-2-aryl ketones and triflic anhydride is described. The reaction of 1-biphenylyl-2-diazo-2-aryl ketones with triflic anhydride proceeded smoothly in the presence of 2,6-di-tert-butylpyridine under mild conditions to produce phenanthrenyl triflates in high to excellent yields. The phenanthrenyl triflate products were demonstrated to be utilized as coupling partners in various coupling reactions. The proposed mechanism involves an intramolecular Friedel-Crafts reaction of a vinyl cation intermediate formed in situ.
Collapse
Affiliation(s)
- Yueqiang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Zhao X, Li M, Sun K, Xu Z, Tian L, Wang Y. Electrochemical deoxygenative homo-couplings of aromatic aldehydes. Chem Commun (Camb) 2023; 59:13062-13065. [PMID: 37849338 DOI: 10.1039/d3cc03346e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
An electrochemical deoxygenative homo-coupling of aromatic aldehydes is achieved to selectively access bibenzyl and stilbene derivatives. The protocol allows the homo-coupling of aldehydes to occur after single-electron-reduction at the cathode. Taking advantage of the oxophilicity of triphenylphosphine, the electrochemical deoxygenation proceeds smoothly to give reductive homo-coupling products.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Meng Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Yu YZ, Bai J, Peng JM, Yao JS, Zhuo CX. Modular Access to meta-Substituted Benzenes via Mo-Catalyzed Intermolecular Deoxygenative Benzene Formation. J Am Chem Soc 2023; 145:8781-8787. [PMID: 36929879 DOI: 10.1021/jacs.3c01330] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The substituted benzene derivatives are essential to organic synthesis, medicinal chemistry, and material science. However, the 1,3-di- and 1,3,5-trisubstituted benzenes are far less prevalent in small-molecule drugs than other substitution patterns, likely due to the lack of robust, efficient, and convenient synthetic methods. Here, we report a Mo-catalyzed intermolecular deoxygenative benzene-forming reaction of readily available ynones and allylic amines. A wide range of unsymmetric and unfunctionalized 1,3-di- and 1,3,5-trisubstituted benzenes were obtained in up to 88% yield by using a commercially available molybdenum catalyst. The synthetic potential of the method was further illustrated by synthetic transformations, a scale-up synthesis, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this benzene-forming process might proceed through a Mo-catalyzed aza-Michael addition/[1,5]-hydride shift/cyclization/aromatization cascade. This strategy not only provided a facile, robust, and modular approach to various meta-substituted benzene derivatives but also demonstrated the potential of molybdenum catalysis in the challenging intermolecular deoxygenative cross-coupling reactions.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.,Shenzhen Research Institute of Xiamen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
6
|
Cao LY, Wang JL, Wang K, Wu JB, Wang DK, Peng JM, Bai J, Zhuo CX. Catalytic Asymmetric Deoxygenative Cyclopropanation Reactions by a Chiral Salen-Mo Catalyst. J Am Chem Soc 2023; 145:2765-2772. [PMID: 36626166 DOI: 10.1021/jacs.2c12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The catalytic asymmetric cyclopropanation reaction of alkenes with diazo compounds is a direct and powerful method to construct chiral cyclopropanes that are essential to drug discovery. However, diazo compounds are potentially explosive and often require hazardous reagents for their preparation. Here, we report on the use of 1,2-dicarbonyl compounds as safe and readily available surrogates for diazo compounds in the direct catalytic asymmetric deoxygenative cyclopropanation reaction. Enabled by a class of simple and readily accessible chiral salen-Mo catalysts, the reaction proceeded with generally good enantioselectivities and yields toward a wide range of substrates (80 examples). Preliminary mechanistic studies suggested that the proposed μ-oxo bridged dinuclear Mo(III)-species was the catalytically active species. This strategy not only provides a promising route for the synthesis of chiral cyclopropanes but also opens a new window for the potential applications of chiral salen-Mo complexes in asymmetric catalysis.
Collapse
Affiliation(s)
- Li-Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiang-Bin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - De-Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|