1
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Smyrnov OK, Melnykov KP, Pashenko OY, Volochnyuk DM, Ryabukhin SV. Stellane at the Forefront: Derivatization and Reactivity Studies of a Promising Saturated Bioisostere of ortho-Substituted Benzenes. Org Lett 2024. [PMID: 38804566 DOI: 10.1021/acs.orglett.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This work highlights stellane's cage stability and derivatization opportunities. A diverse range of building blocks were synthesized using modern synthesis protocols to demonstrate stellane's reactivity and chemical tolerance across different reaction systems, proving its promise as a bioisosteric scaffold. It can be utilized in scaffold-based molecular design and is superior in terms of topological precision compared to existing ortho isosteres, as well as monosubstituted benzene mimetics, holding the potential to become a robust platform for future medicinal chemistry studies.
Collapse
Affiliation(s)
- Oleh K Smyrnov
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Olexandr Ye Pashenko
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| |
Collapse
|
3
|
Hosaka M, Nagasawa S, Iwabuchi Y. C-H Alkylation of Cubanes via Catalytic Generation of Cubyl Radicals. Org Lett 2024; 26:658-663. [PMID: 38236029 DOI: 10.1021/acs.orglett.3c04019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A catalytic method for the C-H alkylation of cubanes is described. Some hydrogen atom transfer catalysts enable the direct abstraction of a hydrogen atom from the C-H bond of cubanes, followed by conjugate addition of the generated cubyl radicals to electron-deficient alkenes. Synthetic applications of the functionalization method developed are also described.
Collapse
Affiliation(s)
- Masaki Hosaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
4
|
Niogret G, Bouvier-Müller A, Figazzolo C, Joyce JM, Bonhomme F, England P, Mayboroda O, Pellarin R, Gasser G, Tucker JHR, Tanner JA, Savage GP, Hollenstein M. Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis. Chembiochem 2024; 25:e202300539. [PMID: 37837257 DOI: 10.1002/cbic.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.
Collapse
Affiliation(s)
- Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Alix Bouvier-Müller
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jack M Joyce
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique UMR CNRS 3523, 28, rue du Docteur Roux, CEDEX 15, 75724, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Olena Mayboroda
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
5
|
Donnier-Valentin L, Kassamba S, Legros J, Fressigné C, Vuluga D, Brown RCD, Linclau B, De Paolis M. Photoinduced Formation of Cubyl Aryl Thioethers and Synthesis of Monocubyl Analogue of Dapsone. Org Lett 2023. [PMID: 37991751 DOI: 10.1021/acs.orglett.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
1,4-Disubstituted cubyl aryl thioethers were generated from the corresponding iodocubanes and aryl thiolates upon UV irradiation in dimethyl sulfoxide at room temperature. This simple procedure was found to be compatible with a variety of substituted aryl thiolates. This finding paved the way to a synthesis of the monocubyl analogue of dapsone, a key molecule in the treatment of leprosy, also known as Hansen's disease, and of acne.
Collapse
Affiliation(s)
| | - Seydou Kassamba
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | - Julien Legros
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | | | - Daniela Vuluga
- INSA Rouen, PBS, UMR 6270, CNRS, 76801 Saint-Etienne-du-Rouvray, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- Department of Organic and Molecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Michaël De Paolis
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| |
Collapse
|
6
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
7
|
Levitre G, Keess S, Molander GA. Photoinduced Diastereoselective Aminoalkylation of Cubanes. Org Lett 2023. [PMID: 37216214 DOI: 10.1021/acs.orglett.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The unique properties of rigid, nonconjugated hydrocarbons provide many opportunities to design molecular building blocks for a variety of applications, but the development of suitable conditions for alkylation of cubanes is quite challenging. Herein, a photoinduced method for aminoalkylation of cubanes is reported. The benign conditions reported allow the incorporation of a wide variety of (hetero)arylimine reaction partners with broad functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|