1
|
Calderón-Díaz A, Boggiano AC, Xiong W, Kaiser N, Gutekunst WR. Degradable N-Vinyl Copolymers through Radical Ring-Opening Polymerization of Cyclic Thionocarbamates. ACS Macro Lett 2024; 13:1390-1395. [PMID: 39374102 PMCID: PMC11580385 DOI: 10.1021/acsmacrolett.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
A thiocarbonyl radical ring-opening polymerization approach was implemented with cyclic thionocarbamates to generate degradable copolymers with N-vinyl monomers. The rigid structures of cyclic N-substituted thionocarbamates have been revealed by X-ray crystallography and NMR spectroscopy. The corresponding copolymers show incorporation of the thiocarbamates within the carbon backbone of polyvinylpyrrolidone influenced by acyl substituents through radical ring-opening copolymerization. The phenyl-substituted cyclic thionocarbamate copolymerized with N-vinyl carbazole and N-vinyl caprolactam, while little to no incorporation occurred with tBu acrylate and styrene, respectively. Further, these copolymers can undergo hydrolytic degradation under mild conditions. A new family of cyclic thionocarbamates capable of radical ring-opening copolymerization with N-vinyl monomers has been established.
Collapse
Affiliation(s)
- Alvaro Calderón-Díaz
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Andrew C. Boggiano
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Wei Xiong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Nadine Kaiser
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | - Will R. Gutekunst
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Jo WS, Curtis BJ, Rehan M, Adrover-Castellano ML, Sherman DH, Healy AR. N-to- S Acyl Transfer as an Enabling Strategy in Asymmetric and Chemoenzymatic Synthesis. JACS AU 2024; 4:2058-2066. [PMID: 38818054 PMCID: PMC11134368 DOI: 10.1021/jacsau.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
The observation of thioester-mediated acyl transfer processes in nature has inspired the development of novel protein synthesis and functionalization methodologies. The chemoselective transfer of an acyl group from S-to-N is the basis of several powerful ligation strategies. In this work, we sought to apply the reverse process, the transfer of an acyl group from N-to-S, as a method to convert stable chiral amides into more reactive thioesters. To this end, we developed a novel cysteine-derived oxazolidinone that serves as both a chiral imide auxiliary and an acyl transfer agent. This auxiliary combines the desirable features of rigid chiral imides as templates for asymmetric transformations with the synthetic applicability of thioesters. We demonstrate that the auxiliary can be applied in a range of highly selective asymmetric transformations. Subsequent intramolecular N-to-S acyl transfer of the chiral product and in situ trapping of the resulting thioester provides access to diverse carboxylic acid derivatives under mild conditions. The oxazolidinone thioester products can also be isolated and used in Pd-mediated transformations to furnish highly valuable chiral scaffolds, such as noncanonical amino acids, cyclic ketones, tetrahydropyrones, and dihydroquinolinones. Finally, we demonstrate that the oxazolidinone thioesters can also serve as a surrogate for SNAC-thioesters, enabling their seamless use as non-native substrates in biocatalytic transformations.
Collapse
Affiliation(s)
- Woonkee S Jo
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi 129188, United Arab Emirates (UAE)
| | - Brian J Curtis
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Mohammad Rehan
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi 129188, United Arab Emirates (UAE)
| | | | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109USA
| | - Alan R Healy
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi 129188, United Arab Emirates (UAE)
| |
Collapse
|
3
|
Galeote O, Kennington SCD, Benedito G, Fraedrich L, Davies-Howe E, Costa AM, Romea P, Urpí F, Aullón G, Font-Bardia M, Puigjaner C. Direct, Stereodivergent, and Catalytic Michael Additions of Thioimides to α,β-Unsaturated Aldehydes - Total Synthesis of Tapentadol. Angew Chem Int Ed Engl 2024; 63:e202319308. [PMID: 38231568 DOI: 10.1002/anie.202319308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Direct and stereodivergent Michael additions of N-acyl 1,3-thiazinane-2-thiones to α,β-unsaturated aldehydes catalyzed by chiral nickel(II) complexes are reported. The reactions proceed with a remarkable regio-, diastereo-, and enantioselectivity, so access to any of the four potential Michael stereoisomers is granted through the appropriate choice of the chiral ligand of the nickel(II) complex. Simple removal of the heterocyclic scaffold furnishes a wide array of either syn or anti enantiomerically pure derivatives, which can be exploited for the asymmetric synthesis of biologically active compounds, as demonstrated in a new approach to tapentadol. In turn, a mechanism, based on theoretical calculations, is proposed to account for the stereochemical outcome of these transformations.
Collapse
Affiliation(s)
- Oriol Galeote
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Stuart C D Kennington
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Gabriela Benedito
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Lena Fraedrich
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Evan Davies-Howe
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Anna M Costa
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Pedro Romea
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Fèlix Urpí
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Gabriel Aullón
- Department of Inorganic and Organic Chemistry, Section of Inorganic Chemistry and Institut de Química Teòrica i Computacional de la Universitat de Barcelona, Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Mercè Font-Bardia
- X-Ray Diffraction Unity, CCiTUB, Universitat de Barcelona, Carrer Solé i Sabarís 1-3, 08028, Barcelona, Spain
| | - Cristina Puigjaner
- X-Ray Diffraction Unity, CCiTUB, Universitat de Barcelona, Carrer Solé i Sabarís 1-3, 08028, Barcelona, Spain
| |
Collapse
|