1
|
Giri M, Dash Y, Guchhait T. Does Larger Cavity-Size Really Help Bigger Anions to Bind? A Scrutiny on Core-Expanded Calix[4]pyrroles and Their Properties. Chempluschem 2024; 89:e202300427. [PMID: 37830245 DOI: 10.1002/cplu.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Calix[4]pyrroles are an important class of oligopyrrolic macrocycles and have found applications in many diverse fields including anion recognition. To modulate the properties of the calix[4]pyrrole, several structural modifications are realized. The core-expansion has attracted extra attention as it provides larger cavity-size compared to parent calix[4]pyrrole(s). This review highlights the synthetic development of various core-expanded calix[4]pyrroles and their applications in anion-binding properties. Emphasis is given to the changes in the binding properties observed with expanded versions of calix[4]pyrrole(s) in both solution and the solid states. The expanded versions of calix[4]pyrrole do not always show higher binding affinities for larger anions as anticipated. Rather, they display reduced affinities with the anions. The truncated form or asymmetric nature of the expanded versions of calix[4]pyrrole does not probably allow to access all the available binding sites for the anions and hence reduced binding affinities are observed. The receptors which contain a greater number of binding sites and are somehow rigid or preorganized apparently show enhanced binding affinities for anions. The relative binding constants for halide series indicate that the enlarged molecules are more beneficial for largest iodide among others. However, most of the receptors show selectivity towards smallest fluoride over other anions studied.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Yashaswini Dash
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| |
Collapse
|
2
|
Bąk KM, Trzaskowski B, Chmielewski MJ. Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability. Chem Sci 2024; 15:1796-1809. [PMID: 38303949 PMCID: PMC10829038 DOI: 10.1039/d3sc05086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Anion templation strategies have facilitated the synthesis of various catenane and rotaxane hosts capable of strong and selective binding of anions in competitive solvents. However, this approach has primarily relied on positively charged precursors, limiting the structural diversity and the range of potential applications of the anion-templated mechanically interlocked molecules. Here we demonstrate the synthesis of a rare electroneutral [2]catenane using a powerful, doubly charged sulfate template and a complementary diamidocarbazole-based hydrogen bonding precursor. Owing to the unique three-dimensional hydrogen bonding cavity and the embedded carbazole fluorophores, the resulting catenane receptor functions as a sensitive fluorescent turn-ON sensor for the highly hydrophilic sulfate, even in the presence of a large excess of water. Importantly, the [2]catenane exhibits enhanced binding affinity and selectivity for sulfate over its parent macrocycle and other acyclic diamidocarbazole-based receptors. We demonstrate also, for the first time, that the co-conformation of the catenane may be controlled by reversible acid/base induced protonation and deprotonation of the anionic template, SO42-. This approach pioneers a new strategy to induce molecular motion of interlocked components using switchable anionic templates.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
3
|
Pamuła M, Bulatov E, Martínez-Crespo L, Kiesilä A, Naulapää J, Kalenius E, Helttunen K. Anion binding and transport with meso-alkyl substituted two-armed calix[4]pyrroles bearing urea and hydroxyl groups. Org Biomol Chem 2023; 21:6595-6603. [PMID: 37530577 DOI: 10.1039/d3ob00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Calix[4]pyrroles bearing hydroxyl (1) or urea (3) groups attached to the meso-positions with propyl linkers were synthesized as cis- and trans-isomers. The anion binding properties of cis-1 and cis-3 were screened with ion-mobility mass spectrometry, where cis-1 formed complexes with Cl-, Br- and H2PO4-, whereas cis-3 formed complexes with most of the investigated anions, including Cl-, Br-, I-, NO3-, ClO4-, OTf-, SCN- and PF6-. The structures of the chloride complexes were further elucidated with density functional theory calculations and a crystal structure obtained for cis-1. In solution, chloride and dihydrogenphosphate anion binding with cis-1 and cis-3 were compared using 1H NMR titrations. To assess the suitability of two-armed calix[4]pyrroles as anion transporters, chloride transport studies of cis-1, cis-3 and trans-3 were performed using large unilamellar vesicles. The results revealed that cis-3 had the highest activity among the investigated calix[4]pyrroles, which was related to the improved affinity and isolation of chloride inside the binding cavity of cis-3 in comparison to cis-1. The results indicate that appending calix[4]pyrroles with two hydrogen bonding arms is a feasible strategy to obtain anion transporters and receptors with high anion affinity.
Collapse
Affiliation(s)
- Małgorzata Pamuła
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Evgeny Bulatov
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Luis Martínez-Crespo
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Julia Naulapää
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Kaisa Helttunen
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| |
Collapse
|