1
|
Lv Y, Pu W, Zhang L, Li D, He L, Dai L, Zhou Y, Zhao S, Chen F, Zhan JL. Copper-Catalyzed 1,4-Alkylarylation of 1,3-Enynes with Ethers and Aryl Boronic Acids Enabled via C(sp 3)-H Functionalization. J Org Chem 2025; 90:1478-1488. [PMID: 39824760 DOI: 10.1021/acs.joc.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Herein, we present a copper-catalyzed, three-component intermolecular 1,4-alkylarylation of 1,3-enynes with ethers and aryl boronic acids. This method, driven by α-C(sp3)-H functionalization of the oxygen atom in ethers, regioselectively produces various tetrasubstituted allenes from simple, readily available precursors. Key features include mild reaction conditions and a simple catalytic system.
Collapse
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Le Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Dandan Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Linjie He
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Linxia Dai
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yaning Zhou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Shuaike Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Fei Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jun-Long Zhan
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
2
|
Yang LF, Zeng L, Liu YL, Hu M, Li JH. Photoreductive 1,4-Dicarbofunctionalization of 1,3-Enynes with Organoiodides and Cyanoarenes via Halogen-Atom Transfer. Org Lett 2024; 26:7661-7666. [PMID: 39197044 DOI: 10.1021/acs.orglett.4c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A photoreductive halogen-atom transfer (XAT) strategy for 1,4-dicarbofunctionalization of 1,3-enynes with organoiodides and cyanoarenes is disclosed, enabling access to functionalized allenes in a highly regio-, chemo-, and stereoselective manner. Upon the photoredox catalysis and the activation of Et3N XAT agents, the mild conditions and high functional group tolerance of this protocol enable the formation of two C-C bonds, including a C(sp3)-C(sp3) bond and a C(sp2)-C(sp2) bond, in a single reaction step, and provides a general avenue to polysubstituted allenes and late-stage modification of bioactive compounds.
Collapse
Affiliation(s)
- Liang-Feng Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Zeng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yi-Lin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Ming Hu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
3
|
Chi Z, Zhou Y, Liu B, Xu X, Liu X, Liang Y. Nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes to access allenes and dienes. Chem Sci 2024; 15:13271-13278. [PMID: 39183907 PMCID: PMC11339949 DOI: 10.1039/d4sc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
The radical-mediated difunctionalization of 1,3-enynes facilitates rapid access to structurally diverse allenes and dienes. Whereas, owing to the existence of multiple active sites in conjugated 1,3-enynes, regulating selectivity in difunctionalized addition via a single transition-metal-catalyzed radical tandem process remains elusive. Herein, we disclose an intriguing protocol of substrate-controlled nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes with the assistance of sulfonyl chlorides and arylboronic acids. This valuable synthetic utility respectively delivers a series of highly functionalized and synthetically challenging allenyl sulfones and dienyl sulfones from fine-tuned 1,3-enynes by one step, which provides a facile approach for complex sulfone-containing drug molecules synthesis.
Collapse
Affiliation(s)
- Zhuomin Chi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongchao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Bingbing Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaojing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xueyuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongmin Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
4
|
Bhatt D, Miyake K, Nakamura S, Kim HY, Oh K. Photoredox-Catalyzed 1,4-Peroxidation-Sulfonylation of Enynones: A Three-Component Radical Coupling Approach for the Synthesis of Highly Functionalized Allenes. Org Lett 2024; 26:2955-2959. [PMID: 38567894 DOI: 10.1021/acs.orglett.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An Eosin Y-catalyzed visible light-promoted 1,4-peroxidation-sulfonylation of enynones was achieved to give tetrasubstituted allenes. The photoredox catalysis of Eosin Y allowed the concomitant formation of peroxy and sulfonyl radicals, where the preferential peroxy radical addition to the alkene moiety of enynones resulted in the subsequent α-keto radical-sulfonyl radical cross couplings. The developed photoredox catalysis of Eosin Y demonstrates a regioselective 1,4-diradical addition strategy, opening up a new possibility of diradical functionalization of conjugate systems.
Collapse
Affiliation(s)
- Divya Bhatt
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul, 06974, Republic of Korea
| | - Kosei Miyake
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul, 06974, Republic of Korea
| |
Collapse
|
5
|
Pu Y, Ding S, Zhao H, Xue Q, Zhang H, Xie X, Shang Y, Wang J. Three-Component Synthesis of Multiple Functionalized Allenes via Copper/Photoredox Dual Catalyzed 1,4-Alkylcyanation of 1,3-Enynes. Org Lett 2024; 26:1834-1839. [PMID: 38388381 DOI: 10.1021/acs.orglett.3c04360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Efficient access to multiple functionalized allenes via a three component 1,4-alkylcyanation of enynes with cyclic alcohol derivatives in the presence of trimethylsilyl cyanide (TMSCN) under copper/photoredox dual catalysis has been developed. Both easily transformable aldehyde and cyano groups were introduced to tetra-substituted allenes through light-induced C-C bond cleavage of cyclic butanol and pentanol derivatives. The reactions proceeded smoothly under mild conditions with broad functional groups tolerance.
Collapse
Affiliation(s)
- Yue Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Qiaoli Xue
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Heng Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Xiaotian Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| |
Collapse
|
6
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Nickel-Catalyzed Reductive Cross-Coupling of Propargylic Acetates with Chloro(vinyl)silanes: Access to Silylallenes. J Org Chem 2024; 89:2885-2894. [PMID: 38355424 DOI: 10.1021/acs.joc.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
7
|
Sun Y, Zhang N, Ren J, Huang H, Luan X, Zuo Z. Highly Selective 1,4-Diacylation/Cycloisomerization of 1,3-Enynes: De Novo Synthetic Strategy to Polysubstituted Furans. Org Lett 2024; 26:35-40. [PMID: 38117816 DOI: 10.1021/acs.orglett.3c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The development of a de novo synthetic strategy for rapid assembly of biologically relevant multisubstituted furans is an appealing but challenging task. Herein, we disclose NHC and organophotocatalysis cocatalyzed three-component radical 1,4-diacylation/cycloisomerization cascade process of readily available 1,3-enynes, which provides an efficient and straightforward entry to a wide range of polysubstituted furans with good yields and excellent regio- and chemoselectivities. The reaction features mild conditions, broad substrate scopes, and good functional group compatibilities.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Na Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jingyun Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Haohao Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Zhijun Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
8
|
Wang Q, Chen Y, Peng K, Li Y, Cheng L, Deng GJ. Three-Component Cross-Electrophile 1,4-Alkylarylation of 1,3-Enynes by Merging Nickel and Photoredox Catalysis. Org Lett 2023. [PMID: 38038400 DOI: 10.1021/acs.orglett.3c03677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A three-component 1,4-alkylarylation of 1,3-enynes with organic halides through the combination of nickel and photoredox catalysis has been established, providing a novel and modular approach for the assembly of tetrasubstituted allenes. This reductive cascade cross-electrophile reaction obviates the need for air-sensitive organometallic reagents and stoichiometric metallic reductants. A diverse range of functional groups are very compatible under mild reaction conditions and give satisfactory yields. Moreover, a reasonable mechanism is presented according to a series of control experiments.
Collapse
Affiliation(s)
- Quanyuan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Keyi Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yue Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lilei Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|