1
|
Ni C, Ramspoth TF, Reis MC, Harutyunyan SR. Manganese(I)-Catalyzed Access to Enantioenriched Chiral Aziridine Phosphines. Angew Chem Int Ed Engl 2025; 64:e202415623. [PMID: 39552509 DOI: 10.1002/anie.202415623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Herein, we present the first catalytic asymmetric nucleophilic addition of diarylphosphines to 2H-azirines, facilitated by a chiral Mn(I) complex. This method not only provides access to novel class of derivatives of the aziridine core - a structural motif recognized for its antitumor and antibacterial properties - but also introduces a phosphine moiety alongside the generation of an NH moiety within a strained three-membered ring. The discovery of this new Mn(I) complex that both enables the reaction and induces stereoselectivity is pivotal, as it underscores the significant potential of this earth-abundant metal in advancing asymmetric catalysis.
Collapse
Affiliation(s)
- Chuang Ni
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tizian-Frank Ramspoth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), C/ Jenaro de la Fuente s, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
2
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2025; 64:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
3
|
Sathish K, Jain S, Sihag N, Yadav MR. gem-Difluoroallene (DFA): an emerging versatile synthetic precursor to enable diverse fluorinated molecules. Org Biomol Chem 2024; 22:8078-8096. [PMID: 39311768 DOI: 10.1039/d4ob01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Organofluorine compounds are increasingly found in diverse fields, such as pharmaceuticals, agrochemicals, and materials science. gem-Difluoroallenes, which have gem-difluoro alkenes and allenes-like properties, offer a distinct and adaptable platform for novel synthetic transformations. Their distinctiveness is highlighted by various strategies, where the gem-difluoro group's presence plays a pivotal role in successful reactions. This review article presents a comprehensive overview of the latest progress in utilizing gem-difluoroallenes for selective additions, defluorination, as well as cycloaddition and cyclization reactions. We also discuss the limitations and future directions in this area, inspiring further exploration and innovation.
Collapse
Affiliation(s)
- Kota Sathish
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Swati Jain
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Naveen Sihag
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - M Ramu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Xu S, Mi R, Zheng G, Li X. Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides via C-H activation and formal phosphoryl migration. Chem Sci 2024; 15:6012-6021. [PMID: 38665527 PMCID: PMC11040647 DOI: 10.1039/d4sc00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
A highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized via cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields via the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity. Photophysical properties of selected 1,2-dihydrophosphete oxides are also disclosed.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
5
|
Sinnema EG, Ramspoth TF, Bouma RH, Ge L, Harutyunyan SR. Enantioselective Hydrophosphination of Terminal Alkenyl Aza-Heteroarenes. Angew Chem Int Ed Engl 2024; 63:e202316785. [PMID: 38133954 DOI: 10.1002/anie.202316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
This paper presents a Mn(I)-catalysed methodology for the enantioselective hydrophosphination of terminal alkenyl aza-heteroarenes. The catalyst operates through H-P bond activation, enabling successful hydrophosphination of a diverse range of alkenyl-heteroarenes with high enantioselectivity. The presented protocol addresses the inherently low reactivity and the commonly encountered suboptimal enantioselectivities of these challenging substrates. As an important application we show that this method facilitates the synthesis of a non-symmetric tridentate P,N,P-containing ligand like structure in just two synthetic steps using a single catalytic system.
Collapse
Affiliation(s)
- Esther G Sinnema
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tizian-Frank Ramspoth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Reinder H Bouma
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Luo Ge
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Li W, Wang C, Xiao M, Cheng LJ. Copper-Catalyzed Protoarylation of gem-Difluoroallenes. Org Lett 2024. [PMID: 38181503 DOI: 10.1021/acs.orglett.3c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
A copper-catalyzed protoarylation of gem-difluoroallenes with aryl boronic esters has been developed, enabling highly regioselective synthesis of gem-difluoroalkenes in high yields. The mild reaction conditions allow for a variety of functional groups to be tolerated, and the reaction can be extended to protoalkenylation of gem-difluoroallenes. The synthetic utility of this method has been demonstrated in gram-scale operation as well as synthesis of chiral gem-difluoroalkenes bearing γ-carbon stereogenic centers in moderate enantioselectivity using a chiral bidentate phosphine ligand with a copper catalyst.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Cheng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Mengdie Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Li-Jie Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
7
|
Chen L, Luo ZF, Ye P, Mao YJ, Xu ZY, Xu DQ, Lou SJ. Z-Selective access to α-trifluoromethyl arylenes through Pd-catalysed fluoroarylation of 1,1-difluoroallenes. Org Biomol Chem 2023; 21:8979-8983. [PMID: 37934046 DOI: 10.1039/d3ob01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The synthesis of stereo-defined α-trifluoromethyl arylenes is of great importance in medical chemistry, organic chemistry, and materials science. However, despite the recent advances, the Z-selective formation of α-trifluoromethyl arylenes has remained underdeveloped. Here, we describe a facile approach towards Z-α-trifluoromethyl arylenes through Pd-catalysed stereoselective fluoroarylation of 1,1-difluoroallenes in the presence of a bulky monophosphine ligand.
Collapse
Affiliation(s)
- Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ze-Feng Luo
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|