1
|
Su B, Zhang T, Mao M, Wang R, You B, Zhang J, Yu L, Si S, Wu J, Chen M. New diketopiperazine dimers and 4-hydroxyphenylacetates from an endolichenic fungus Aspergillus sp. Fitoterapia 2025; 180:106318. [PMID: 39608465 DOI: 10.1016/j.fitote.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Two novel diketopiperazine dimers (1 and 2) and two new 4-hydroxyphenylacetates (5 and 6), along with two previously known diketopiperazine dimers were isolated from the culture of the endolichenic fungus Aspergillus sp. CPCC 400810. Their structures were determined through comprehensive spectroscopic analysis, including high-resolution electrospray ionization mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) data. The absolute configurations of the new compounds were confirmed using Marfey's method and chemical synthesis.
Collapse
Affiliation(s)
- Bingjie Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengjia Mao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Renzhong Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baoqing You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshuai Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang Uygur Autonomous Region, Urumqi 830004, China.
| |
Collapse
|
2
|
Yu M, Chen S, Shi J, Chen W, Qiu Y, Lan J, Qu S, Feng J, Wang R, Lin F, Huang G, Zheng C. Structures and Biological Activities of Secondary Metabolites from Daldinia spp. J Fungi (Basel) 2024; 10:833. [PMID: 39728329 DOI: 10.3390/jof10120833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
The genus Daldinia have long been recognized as a source of structural novel, pharmaceutically relevant natural products. We reviewed the structures and activities of secondary metabolites isolated from the genus of Daldinia from January 1995 to June 2024, and 280 compounds, including six major categories-terpenoids, alkaloids, polyketides, polyphenols, steroids, and other classes-are presented in this review. Among these metabolites, 196 were identified as new structures. Remarkably, 112 compounds exhibited a range of biological activities, including cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities. This review highlights the bioactive metabolites discovered in the past three decades from the genus of Daldinia while also exploring the potential of these symbiotic fungi as rich sources of novel and diverse natural products. The varying bioactivities of these metabolites offer a vast array of promising lead compounds and also could significantly contribute to the development of new medicines.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jing Lan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiyan Qu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiayi Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Ru Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Fangru Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
3
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2023. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1389-1404. [PMID: 39450496 DOI: 10.1080/10286020.2024.2412762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
The new natural products reported in 2023 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2023 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| |
Collapse
|
4
|
Wang QY, Chen HP, Tao H, Li X, Zhao Q, Liu JK. Penidaleodiolides A and B, Cage-Like Polyketides with Neurotransmission-Regulating Activity from the Soil Fungus Penicillium daleae L3SO. Org Lett 2024; 26:7632-7637. [PMID: 39235108 DOI: 10.1021/acs.orglett.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Penicillium daleae L3SO is a fungus isolated from the rhizospheric soil of the chloroplast-deficient plant Monotropa uniflora. A chemical study on the rice fermentation of this fungus led to the isolation and identification of two cage-like polyketides, penidaleodiolide A (1) and its biosynthetic-related congener penidaleodiolide B (2). The structures of 1 and 2 were determined by a combination of extensive spectroscopic analysis, biosynthetic consideration, chemical derivatization, and computational methods. Compound 1 harbors an unusual tricyclo[4.3.04,9]nonane scaffold, unprecedented in polyketide natural products. The hypothetical biosynthetic pathways for 1 and 2 were postulated and were supported by CRISPR/Cas9 genome editing results. Penidaleodiolide A (1) showed a significant inhibitory effect on the action potentials of murine hippocampal basket neurons and decreased the frequency of spontaneous excitatory postsynaptic currents in a concentration-dependent manner (the inhibition ratios were 0.30 ± 0.02 for 1 μM, 0.37 ± 0.03 for 10 μM, and 0.50 ± 0.07 for 20 μM) while being devoid of cytotoxicity against the nerve cells.
Collapse
Affiliation(s)
- Qing-Yuan Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haobo Tao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xinyang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Qianru Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
5
|
Han JS, Kim ES, Cho YB, Kim SY, Lee MK, Hwang BY, Lee JW. Cytotoxic Peptaibols from Trichoderma guizhouense, a Fungus Isolated from an Urban Soil Sample. JOURNAL OF NATURAL PRODUCTS 2024; 87:1994-2003. [PMID: 39102454 DOI: 10.1021/acs.jnatprod.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Soil sustains human life by nourishing crops, storing food sources, and housing microbes, which may affect the nutrition and biosynthesis of secondary metabolites, some of which are used as drugs. To identify lead compounds for a new class of drugs, we collected soil-derived fungal strains from various environments, including urban areas. As various human pathogens are assumed to influence the biosynthetic pathways of metabolites in soil fungi, leading to the production of novel scaffolds, we focused our work on densely populated urban areas and tourist attractions. A soil-derived fungal extract library was screened against MDA-MB-231 cells to derive their cytotoxic activity. Notably, 10 μg/mL of the extract of Trichoderma guizhouense (DS9-1) was found to exhibit an inhibitory effect of 71%. Fractionation, isolation, and structure elucidation efforts led to the identification of nine new peptaibols, trichoguizaibols A-I (1-9), comprising 14 amino acid residues (14-AA peptaibols), and three new peptaibols, trichoguizaibols J-L (10-12), comprising 18 amino acid residues (18-AA peptaibols). The chemical structures of 1-12 were determined based on their 1D and 2D NMR spectra, HRESIMS, electronic circular dichroism data, and results of the advanced Marfey's method. The 18-AA peptaibols were found to exhibit cytotoxicity against MDA-MB-231, SK-Hep1, SKOV3, DU145, and HCT116 cells greater than that of the 14-AA peptaibols. Among these compounds, 10-12 exhibited potent sub-micromolar IC50 values. These results are expected to shed light on a new direction for developing novel scaffolds as anticancer agents.
Collapse
Affiliation(s)
- Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
6
|
Shi Y, Ji M, Dong J, Shi D, Wang Y, Liu L, Feng S, Liu L. New bioactive secondary metabolites from fungi: 2023. Mycology 2024; 15:283-321. [PMID: 39247896 PMCID: PMC11376311 DOI: 10.1080/21501203.2024.2354302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 09/10/2024] Open
Abstract
Fungi have been identified as a prolific source of structurally unique secondary metabolites, many of which display promising biological and pharmacological properties. This review provides an overview of the structures of new natural products derived from fungi and their biological activities along with the research strategies, which focuses on literature published in the representative journals in 2023. In this review, a total of 553 natural products including 219 polyketides, 145 terpenoids, 35 steroids, 106 alkaloids, and 48 peptides are presented. By summarising the latest findings, this review aims to provide a guide and inspire further innovation in the fields of the discovery of fungal natural products and pharmaceutical development.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yitong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Longhui Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Feng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang W, Ran Q, Li H, Lou H. Endolichenic Fungi: A Promising Medicinal Microbial Resource to Discover Bioactive Natural Molecules-An Update. J Fungi (Basel) 2024; 10:99. [PMID: 38392771 PMCID: PMC10889713 DOI: 10.3390/jof10020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful and structurally novel secondary metabolites to resist external environmental stresses. The endofungi that live in and coevolve with lichens can also generate abundant secondary metabolites with novel structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with hosts, and they have been considered as strategically significant medicinal microresources for the discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great importance in the fundamental research field of natural product chemistry. In this work, we conducted a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic fungi regarding their origin, distribution, structural characteristics, and biological activity, as well as recent advances in their medicinal applications, by summarizing research achievements since 2015. Moreover, the current research status and future research trends regarding their chemical components are discussed and predicted. A systematic review covering the fundamental chemical research advances and pharmaceutical potential of the secondary metabolites from endolichenic fungi is urgently required to facilitate our better understanding, and this review could also serve as a critical reference to provide valuable insights for the future research and promotion of natural products from endolichenic fungi.
Collapse
Affiliation(s)
- Wenge Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Qian Ran
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Hehe Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
8
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2023; 40:1590-1594. [PMID: 37792004 DOI: 10.1039/d3np90045b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products, such as dysambiol from a Dysidea species.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|