1
|
Sun H, Meng W, Ma X, Cheng Z, Chen C, Ni Y, Yan F, Zhu Q, Zhang P, Sui X. Photoredox-Catalyzed Three-Component Construction of Aryl Sulfonyl Fluoride Using KHF 2: Late-Stage Drug Fluorosulfonylation. J Org Chem 2024; 89:16594-16599. [PMID: 39482942 DOI: 10.1021/acs.joc.4c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aryl sulfonyl fluorides are prominently featured in organic synthesis and medicinal chemistry. Herein, a metal-free photoredox-catalyzed three-component assembly of aryl sulfonyl fluoride via aryl sulfonyl ammonium salt intermediate has been reported. A variety of structurally diverse aryl sulfonyl fluorides were synthesized rapidly from dibenzothiophenium (DBT) salts under mild conditions by using KHF2 as the fluorine source. Notably, this methodology can be employed as an efficient and sustainable approach for late-stage drug fluorosulfonylation. Good yields and broad functionality tolerance were the features of this methodology. Moreover, the derivatization of aryl sulfonyl fluoride molecules was also demonstrated to showcase its synthetic utility.
Collapse
Affiliation(s)
- Hanhan Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wanqing Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhiling Cheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Cheng Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yan Ni
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fengying Yan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiaomei Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ping Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xianwei Sui
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
2
|
Du HJ, Qi L, Yan ZM, Liu JL, Li W, Wang LJ. Copper-Catalyzed Oxyfluorosulfonylation of β,γ-Unsaturated Oximes with Sulfur Dioxide and Selectfluor for Isoxazoline-Functionalized Aliphatic Sulfonyl Fluorides. J Org Chem 2024; 89:13847-13852. [PMID: 39297778 DOI: 10.1021/acs.joc.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this report, we describe a copper-catalyzed cascade reaction involving oxygen radical-induced cyclization/SO2 insertion/fluorination of β,γ-unsaturated oximes with sulfur dioxide and Selectfluor under mild conditions for the synthesis of isoxazoline-functionalized aliphatic sulfonyl fluorides. The synthetic potential of these compounds has been evaluated through diverse SuFEx reactions.
Collapse
Affiliation(s)
- Hui-Jie Du
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jia-Li Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, PR China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, PR China
| |
Collapse
|
3
|
Yu F, Wang W, Wang S. Copper-Catalyzed, Interrupted Remote Fluoromethylthiolation of Unactivated C(sp3)-H Bonds. Org Lett 2024; 26:2068-2072. [PMID: 38426710 DOI: 10.1021/acs.orglett.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient copper-catalyzed selective fluoromethylthiolation of an inert δ-C(sp3)-H bond in sulfonamides was reported. In the presence of a copper catalyst and PhSO2SRf, the radical generated through 1,5-hydrogen atom transfer (HAT) was sufficiently trapped by PhSO2SRf, instead of copper, which was prevalent in metal-catalyzed radical-relay processes, incorporating a fluoromethylthio group into molecules. The general substrate scope and mild conditions endowed the method with wide potential applications in pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Fan Yu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
4
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|