1
|
Gu YT, Chen DD, Wang CB, Cheng Q, Han JR, Tian X, Liu S, Su W. A Mild and General trans-Diboration of Both Terminal and Internal Propargyl Alcohols. Org Lett 2024; 26:10499-10504. [PMID: 39605161 DOI: 10.1021/acs.orglett.4c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A practical and efficient trans-diboration of propargyl alcohols was accomplished using sodium hydride (NaH) as a base in N,N-dimethylformamide at room temperature. The mild reaction conditions demonstrate general applicability, facilitating the successful conversion of both terminal and internal propargyl alcohols with diverse structures and functional groups into highly functionalized alkenediboronates [4-borylated 1,2-oxaborol-2(5H)-oles]. The resulting products, which incorporate two boron groups, can be selectively activated and subjected to stepwise transformations, thereby providing an effective platform for synthesizing a wide range of structurally diverse trisubstituted alkenes.
Collapse
Affiliation(s)
- Yu-Tong Gu
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Di-Di Chen
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Cheng-Bin Wang
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Qiushi Cheng
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Jian-Rong Han
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Xia Tian
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Shouxin Liu
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Wei Su
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| |
Collapse
|
2
|
Feng X, Liu Z, Ni QY, Wang B, Ingleson MJ, Yuan K. N-Directed Two-Fold Bromoboration of Diynes Enables Access to Brominated BN-Embedded PAHs. Org Lett 2024; 26:10339-10344. [PMID: 39568236 DOI: 10.1021/acs.orglett.4c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
N-directed 2-fold bromoboration reactions of diynes with BBr3 have been developed, allowing the access to novel internally BN-doped polycyclic aromatic hydrocarbons from readily available precursors under mild conditions. Computational investigations identified three potential reaction mechanisms, each involving either BBr3 or [BBr4]-, with low activation barriers (ΔG‡ < 16 kcal/mol) for all pathways. The resulting brominated products can be further functionalized through various cross-coupling protocols, enabling the synthesis of highly luminescent emitters with quantum yield exceeding 90.
Collapse
Affiliation(s)
- Xiaoran Feng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Zhaobo Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Qing-Yun Ni
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Bing Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Kang Yuan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Komaki T, Sato Y, Uchiyama M, Tanaka K, Nagashima Y. Visible-Light-Induced trans-Hydroboration of Diaryl Alkynes Utilizing Excited State of Borate Complexes. Org Lett 2024; 26:2180-2185. [PMID: 38466232 DOI: 10.1021/acs.orglett.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We have developed visible-light-induced trans-hydroboration of diaryl alkynes via direct photoexcitation of in-situ-generated diboron complexes, affording previously elusive (E)-1,2-diaryl-vinylboronates with high stereoselectivity. Experimental, spectroscopic, and theoretical mechanistic studies revealed that the triplet-state borate complex facilitates B-B bond cleavage and the desired C-B bond formation. This methodology does not require any catalyst and is operationally simple. The highly borylated 1,2-diaryl alkenes [1-(2-borylphenyl)vinyl)boronates] are shown to be useful as building blocks.
Collapse
Affiliation(s)
- Takahiro Komaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|