1
|
Wu J, Shi H, Li X, He J, Zhang C, Sun F, Du Y. Synthesis of 4-functionalized pyrazoles via oxidative thio- or selenocyanation mediated by PhICl 2 and NH 4SCN/KSeCN. Beilstein J Org Chem 2024; 20:1453-1461. [PMID: 38952956 PMCID: PMC11216092 DOI: 10.3762/bjoc.20.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
A series of 4-thio/seleno-cyanated pyrazoles was conveniently synthesized from 4-unsubstituted pyrazoles using NH4SCN/KSeCN as thio/selenocyanogen sources and PhICl2 as the hypervalent iodine oxidant. This metal-free approach was postulated to involve the in situ generation of reactive thio/selenocyanogen chloride (Cl-SCN/SeCN) from the reaction of PhICl2 and NH4SCN/KSeCN, followed by an electrophilic thio/selenocyanation of the pyrazole skeleton.
Collapse
Affiliation(s)
- Jialiang Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chen Zhang
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fengxia Sun
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
3
|
Karmaker PG, Yang X. Recent Advancement on the Indirect or Combined Alternative Thiocyanate Sources for the Construction of S-CN Bonds. CHEM REC 2024; 24:e202300312. [PMID: 38085121 DOI: 10.1002/tcr.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Indexed: 03/10/2024]
Abstract
The process of thiocyanation is a notable chemical conversion owing to the extensive range of applications associated with thiocyanate compounds in the field of organic chemistry. In past centuries, the thiocyanation reaction incorporated metal thiocyanates or thiocyanate salts as sources of thiocyanate, which are environmentally detrimental and undesirable. In recent literature, there have been numerous instances where combined or indirect alternative sources of thiocyanate have been employed as agents for thiocyanation, showcasing their noteworthy applications. The present literature review focuses on elucidating the ramifications associated with the utilization of indirect or combined alternative sources of thiocyanate in various thiocyanation reactions.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
4
|
Li Y, Wang L, Zhou S, He G, Zhou Y. Electrochemical oxidative cyclization of N-allylamides for the synthesis of CF 3-containing benzoxazines and oxazolines. RSC Adv 2024; 14:154-159. [PMID: 38173567 PMCID: PMC10758801 DOI: 10.1039/d3ra07282g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The introduction of trifluoromethyl (-CF3) groups into compounds is a common synthetic strategy in organic chemistry. Commonly used methods for introducing trifluoromethyl groups are limited by harsh reaction conditions, low regioselectivity, or the need for excess reagents. In this study, a facile electrochemical oxidative and radical cascade cyclization of N-(2-vinylphenyl)amides for the synthesis of CF3-containing benzoxazines and oxazolines was obtained. This sustainable protocol features inexpensive and durable electrodes, a wide range of substrates, diverse functional group compatibility under transition-metal-free, external-oxidant-free, and additive-free conditions, and can be applied in an open environment.
Collapse
Affiliation(s)
- Yutian Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shengbin Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoxue He
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Liu X, Hao L, Wang Y, Ji Y. Synthesis of β-Hydroxysulfides via Multi-Component Cascade Hydroxysulfenylation of Styrenes with NH 4 SCN and Water under Transition-metal-free Conditions. Chem Asian J 2024; 19:e202300901. [PMID: 37964673 DOI: 10.1002/asia.202300901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Transition-mental-free multi-component hydroxysulfenylation of styrenes with NH4 SCN and water to from β-hydroxysulfides is established. The reaction mechanism proceeded via a domino reaction after a radical addition to 2-phenylimidazo[1,2-a]pyridines. This approach features a wide substrate scope and functional group compatibility, providing 34 compounds in acceptable yields.
Collapse
Affiliation(s)
- Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Patel K, Oginetz L, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Thiocyanates en Route to Thiols by Stereoinvertive Nucleophilic Substitution at Nonclassical Carbocations. Org Lett 2023; 25:8474-8477. [PMID: 37982581 DOI: 10.1021/acs.orglett.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An effective InBr3-catalyzed nucleophilic thiocyanation of cyclopropyl alcohols has been developed. The reaction takes place at the quaternary carbon stereocenter of the cyclopropyl carbinol with a complete inversion of configuration, offering a novel pathway for the creation of complex tertiary alkyl thiocyanates with high diastereopurity. These substitution reactions proceed under mild reaction conditions and tolerate several functional groups. Additionally, thiocyanates were converted to thiols using lithium aluminum hydride.
Collapse
Affiliation(s)
- Kaushalendra Patel
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Lior Oginetz
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
7
|
Yan Q, Chen S, Fan J, Li Z. Recent advances in radical thiocyanation cyclization or spirocyclization reactions. Org Biomol Chem 2023; 21:9112-9122. [PMID: 37986647 DOI: 10.1039/d3ob01659e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Organic thiocyanates are valuable biological moities and drug-building blocks. They can also transform effectively into thioethers, thiols, alkynyl thioethers, and thiocarbamates in synthetic chemistry. With respect to the merits of thiocyanates, many chemists and our research team have developed diverse strategies to access SCN-revised heterocycles/spirocycles via an effective radical cyclization process. Hence, this review article first describes the importance/application of thiocyanates. Subsequently, it summarizes the reaction conditions, substrate scopes, and plausible mechanism, respectively, of the excellent work stated above.
Collapse
Affiliation(s)
- Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Shiliu Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jie Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
8
|
Liu Y, Feng Y, Nie J, Xie S, Pen X, Hong H, Chen X, Chen L, Li Y. Aromatization of cyclic hydrocarbons via thioether elimination reaction. Chem Commun (Camb) 2023; 59:11232-11235. [PMID: 37655718 DOI: 10.1039/d3cc03279e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Herein, the diversity-oriented aromatization of cyclic hydrocarbons via potassium ethyl xanthogenate (EtOCS2K)/NH4I-mediated methylthiyl radical addition and thioether elimination was investigated under transition-metal-free conditions. The methylthiyl radical species were generated in situ via the NH4I-mediated decomposition of DMSO following which EtOCS2K promoted the breaking of carbon-sulfur bonds of thioether.
Collapse
Affiliation(s)
- Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Yingqi Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Jinli Nie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Sijie Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Xin Pen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Huanliang Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| |
Collapse
|
9
|
Zhang D, Yang Q, Cai J, Ni C, Wang Q, Wang Q, Yang J, Geng R, Fang Z. Synthesis of 3-Thiocyanobenzothiophene via Difunctionalization of Active Alkyne Promoted by Electrochemical-Oxidation. Chemistry 2023; 29:e202203306. [PMID: 36453091 DOI: 10.1002/chem.202203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A novel and green method for the synthesis of 3-thiocyanatobenzothiophenes via electrochemical-oxidation promoted difunctionalization of active alkyne has been developed. In this protocol, inexpensive and easily available potassium thiocyanate was chosen as the thiocyanation reagent, 2-alkynylthioanisoles as the substrates, a variety of 3-thiocyanatobenzothiophenes were obtained in moderate to good yields under oxidant- and catalyst-free conditions. Moreover, the continuous flow system has good applicability for this transformation, the use of continuous flow system has overcome the disadvantage of low efficiency in traditional electrochemical amplification, and realized the stable and excellent yields of target products in the scale-up reactions.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qijun Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinlin Cai
- School of History and Public Administration, Yancheng Teachers University, 224007, Yancheng, China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingming Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., 211816, Nanjing, P. R. China
| |
Collapse
|
10
|
Hu J, Wan H, Wang S, Yi H, Lei A. Electrochemical Thiocyanation/Cyclization Cascade to Access Thiocyanato-Containing Benzoxazines. Catalysts 2023. [DOI: 10.3390/catal13030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Due to the importance of SCN-containing heteroarenes, developing novel and green synthetic protocols for the synthesis of SCN-containing compounds has drawn much attention over the last decades. We reported here an electrochemical oxidative cyclization of ortho-vinyl aniline to access various SCN-containing benzoxazines. Mild conditions, an extra catalyst-free and oxidant-free system, and good tolerance for air highlight the application potential of this method.
Collapse
|
11
|
Hu X, Guo H, Jiang H, Zheng R, Zhou Y, Wang L. Visible-light-induced C(sp 3)-H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1 H-pyrazoles. Org Biomol Chem 2023; 21:2232-2235. [PMID: 36810647 DOI: 10.1039/d3ob00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A direct, aerobic and visible light photocatalytic approach to synthesize 4-thiocyanated 5-hydroxy-1H-pyrazoles via cross-coupling of pyrazolin-5-ones with ammonium thiocyanate is described. Under redox-neutral and metal-free conditions, a series of 4-thiocyanated 5-hydroxy-1H-pyrazoles could be easily and efficiently obtained in good to high yields by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source.
Collapse
Affiliation(s)
- Xiurong Hu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Haichang Guo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Huajiang Jiang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Yaqin Zhou
- Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China. .,Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| |
Collapse
|
12
|
Li C, Xiang X, Zhang X, He ZL, Gu SX, Dong XQ. Iridium-Catalyzed Intramolecular Asymmetric Allylation of Vinyl Benzoxazinones for the Synthesis of Chiral 4 H-3,1-Benzoxazines via Kinetic Resolution. Org Lett 2023; 25:1172-1177. [PMID: 36779869 DOI: 10.1021/acs.orglett.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Chiral benzoxazinones and 4H-3,1-benzoxazines as important motifs are widely found in abundant pharmaceuticals and biological molecules. We herein successfully developed the first kinetic resolution (KR) process of racemic benzoxazinones through Ir-catalyzed asymmetric intramolecular allylation, furnishing a wide range of chiral benzoxazinones and 4H-3,1-benzoxazines with excellent results via outstanding KR performances (with the s factor up to 170). This protocol exhibited broad substrate scope generality and good functional group tolerance, and the chiral 4H-3,1-benzoxazine products could be readily transformed to other useful optically active heterocycles.
Collapse
Affiliation(s)
- Chenzong Li
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xun Xiang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xianghe Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhao-Lin He
- School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Shuang-Xi Gu
- School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
13
|
Electrochemical oxythiocyanation of ortho-olefinic amides: access to diverse thiocyanated benzoxazines. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
A efficient, metal-free and sustainable synthesis, C-S linked by simple C-H thiocyanation of 4-aminocoumarin or 4-(N-aryl)aminocoumarin derivativess. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Visible-light-induced photocatalyst-free intramolecular sp3 C–H oxidation of 2‑alkyl benzamides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Sun L, Cui J, Nie S, Xie L, Wang Y, Wu L. NIS‐Mediated Intramolecular sp3 C–H Oxidation of 2‐Alkyl‐Substituted Benzamides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Sun
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Jichun Cui
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Shaozhen Nie
- Liaocheng University School of pharmacy, College of Chemistry and Chemical engineering CHINA
| | - Lei Xie
- Liaocheng University School of pharmacy, College of Chemistry and Chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Lingang Wu
- Liaocheng University College of Chemistry and Chemical engineering No. 1, Hunan Road 252000 Liaocheng CHINA
| |
Collapse
|
17
|
Tao S, Huo A, Gao Y, Zhang X, Yang J, Du Y. PhICl2-Mediated Regioselective and Electrophilic Oxythio/Selenocyanation of o-(1-Alkynyl)benzoates: Access to Biologically Active S/SeCN-Containing Isocoumarins. Front Chem 2022; 10:859995. [PMID: 35665060 PMCID: PMC9158338 DOI: 10.3389/fchem.2022.859995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The application of PhICl2/NH4SCN and PhICl2/KSeCN reagent systems to the synthesis of the biologically active S/SeCN-containing isocoumarins via a process involving thio/selenocyanation, enabled by thio/selenocyanogen chloride generated in situ, followed with an intramolecular lactonization was realized. Gram-scale synthesis, further derivatization to access C4 thio/selenocyanated Xyridin A and anti-tumor activities of the obtained products highlight the potential use of this method.
Collapse
Affiliation(s)
- Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Aiwen Huo
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| |
Collapse
|
18
|
Zhou Q, Song X, Zhang X, Fan X. Synthesis of Spiro[benzo[ d][1,3]oxazine-4,4'-isoquinoline]s via [4+1+1] Annulation of N-Aryl Amidines with Diazo Homophthalimides and O 2. Org Lett 2022; 24:1280-1285. [PMID: 35129363 DOI: 10.1021/acs.orglett.1c04193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthesis of spiro[benzo[d][1,3]oxazine-4,4'-isoquinoline]s through a unique [4+1+1] annulation of N-aryl amidines with diazo homophthalimides and O2 is presented. This unprecedented spirocyclization reaction features readily obtainable substrates, structurally and pharmaceutically attractive products, a cost-free and clean oxygen source, sustainable reaction medium, tolerance of a broad spectrum of functional groups, and an interesting reaction mechanism based on sequential C(sp2)-H/C(sp3)-H bond cleavage and oxygen insertion.
Collapse
Affiliation(s)
- Qianting Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xia Song
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Gummidi L, Muddassar A, Sharma GVM, Murugesh V, Suresh S. Tandem aza-Michael addition-vinylogous aldol condensation: synthesis of N-bridged pyridine fused quinolones. Org Biomol Chem 2022; 20:773-777. [PMID: 34991153 DOI: 10.1039/d1ob02087k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we present a tandem aza-Michael addition-vinylogous aldol condensation strategy for the synthesis of N-bridged pyridine fused quinolone derivatives from quinolones and ynones. The presented tandem transformation features the construction of C-N and CC bonds in a single operation, under transition metal-free conditions. The wide substrate scope and gram scale synthesis of pyridine fused quinolone derivatives expand the synthetic value of the presented protocol.
Collapse
Affiliation(s)
- Lalitha Gummidi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - Altaf Muddassar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - Gangavaram V M Sharma
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - V Murugesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
20
|
Wang Z, Liu R, Qu C, Zhao XE, Lv Y, Yue H, Wei W. Elemental sulfur as the “S” source: visible-light-mediated four-component reactions leading to thiocyanates. Org Chem Front 2022. [DOI: 10.1039/d2qo00539e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An eco-friendly and photocatalyst-free visible-light-promoted four-component reaction of α-diazoesters, elemental sulfur, cyclic ethers and TMSCN leading to thiocyanates is described.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ruisheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| |
Collapse
|
21
|
Yang Y, Liu L, Li K, Zha Z, Sun Q, Wang Z. Iodine-mediated oxythiolation of o-vinylanilides with disulfides for the synthesis of benzoxazines. RSC Adv 2022; 12:7347-7351. [PMID: 35424675 PMCID: PMC8982212 DOI: 10.1039/d2ra01078j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient iodine-mediated oxythiolation of o-vinylanilides with disulfides was developed. By virtue of this method, a series of thio-tethered benzoxazine derivatives were synthesized in good to excellent yields. The reaction features high yields, is metal-free, and has a wide substrate scope. An efficient iodine-mediated oxythiolation of o-vinylanilides with disulfides was developed. The reaction features high yields, is metal-free, and has a wide substrate scope.![]()
Collapse
Affiliation(s)
- Yu Yang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Liyan Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kuiliang Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
22
|
Zhang K, Liang T, Wang Y, He C, Hu M, Duan XH, Liu L. Oxidative thiocyanation of allylic alcohols: an easy access to allylic thiocyanates with K2S2O8 and NH4SCN. Org Chem Front 2022. [DOI: 10.1039/d1qo01710a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical method for the synthesis of allylic thioacyanates from allylic alcohols was disclosed employing K2S2O8 as the oxidant and NH4SCN as the thiocyanate source.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianbing Liang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Li H, Lu F, Xu J, Hu J, Alhumade H, Lu L, Lei A. Electrochemical oxidative selenocyclization of olefinic amides towards the synthesis of iminoisobenzofurans. Org Chem Front 2022. [DOI: 10.1039/d2qo00406b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We introduced an electrochemical oxidative radical cascade cyclization of olefinic amides and diselenides without a transition-metal catalyst and external oxidant. This selenocyclization reaction provided a facile method to construct C–Se and C–O bonds in one step.
Collapse
Affiliation(s)
- Hao Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Fangling Lu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Xu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianguo Hu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lijun Lu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, P. R. China
- King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Zhao Y, Guo X, Li S, Fan Y, Sun X, Tian L. PhB(OH) 2-Promoted Electrochemical Sulfuration-Formyloxylation of Styrenes and Selectfluor-Mediated Oxidation-Olefination. Org Lett 2021; 23:9140-9145. [PMID: 34783249 DOI: 10.1021/acs.orglett.1c03461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a PhB(OH)2-promoted electrochemical sulfuration-formyloxylation reaction of styrenes employing commercially available thiophenols/thiols as thiolating agents. Specifically, metal catalysts and external chemical oxidants are not needed in the reaction for the formation of β-formyloxy sulfides, and these sulfides can be further converted to (E)-vinyl sulfones via the Selectfluor-mediated oxidation-olefination. Notably, on the basis of this electrochemical oxidation strategy, β-hydroxy sulfide, β-formyloxy sulfoxide, β-formyloxy sulfone, and (E)-vinyl sulfoxide can also be easily prepared.
Collapse
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuejun Sun
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Laijin Tian
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
25
|
Qin F, Wang H, Cao T, Liu Q, Xu Q, Zheng H, Zhu M, Li T, Liu Y, Wei W. Metal‐free Radical Cyclization of Olefinic 1,3‐Dicarbonyls and Olefinic Amides with Nitrile C(sp
3
)−H Bonds in Aqueous Media. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fu‐Hua Qin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hui‐Zhi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Ting‐Ting Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qi‐Li Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical Engineering Liaocheng University Liaocheng, Shandong 252059 P. R. China
| | - Meiling Zhu
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Yi‐Lin Liu
- College of Chemistry and Materials Engineering Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Huaihua University Huaihua, Hunan 418008 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| |
Collapse
|
26
|
Ghosh A, Hegde RV, Rode HB, Ambre R, Mane MV, Patil SA, Sridhar B, Dateer RB. Catalyst- and Additive-Free Approach to Constructing Benzo-oxazine, Benzo-oxazepine, and Benzo-oxazocine: O Atom Transfer and C═O, C-N, and C-O Bond Formation at Room Temperature. Org Lett 2021; 23:8189-8193. [PMID: 34643397 DOI: 10.1021/acs.orglett.1c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Rajeev V Hegde
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Ram Ambre
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan, Republic of China
| | - Manoj V Mane
- KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography Analytical Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
27
|
Li XM, Qian ZM, He YH, Guan Z. Visible-light-mediated radical addition/cyclization tandem reaction for the synthesis of 3-bromomethyl-3,4-dihydroisocoumarins. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Dong XY, Du DM. Asymmetric 1,4-Michael Addition Reaction of Azadienes with α-Thiocyanoindanones Catalyzed by Bifunctional Chiral Squaramide. Molecules 2021; 26:molecules26175146. [PMID: 34500581 PMCID: PMC8456331 DOI: 10.3390/molecules26175146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, the organocatalytic asymmetric 1,4-Michael addition reaction of azadienes and α-thiocyanoindanones was investigated. A series of chiral benzofuran compounds containing thiocyano group and quaternary carbon center were synthesized in moderate yields with good enantioselectivities (up to 90:10 er) and high diastereoselectivities (up to >95:5 dr). This is the first case of 1,4-Michael addition reaction using α-thiocyanoindanones to obtain a series of chiral thiocyano compounds and further broaden the scope of application of azadiene substrates. In addition, a possible reaction mechanism is also described in the article.
Collapse
Affiliation(s)
| | - Da-Ming Du
- Correspondence: ; Tel.: +86-106-891-4985
| |
Collapse
|
29
|
Li C, Long P, Fu Z, Wu D, Chen F, Yin H. Thiocyanation/Cyclization of γ‐hydroxy Olefins to Access Thiocyanato‐Containing Oxygen Heterocyclic Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chengcheng Li
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Pingliang Long
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| |
Collapse
|
30
|
Hu FP, Zhang MM, Huang GS. Lewis-acid-promoted cyclization reaction: synthesis of N3-chloroethyl and N3-thiocyanatoethyl quinazolinones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01435h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Lewis-acid-promoted cyclization reaction of benzoyl chlorides with 2-(4,5-dihydrooxazol-2-yl)anilines, which can offer a series of N3-chloroethyl quinazolinones, is disclosed.
Collapse
Affiliation(s)
- Fang-Peng Hu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry, Lanzhou University
- Lanzhou 730000
- China
| | - Ming-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry, Lanzhou University
- Lanzhou 730000
- China
| | - Guo-Sheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry, Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
31
|
Hua J, Bian M, Ma T, Yang M, He W, Yang Z, Liu C, Fang Z, Guo K. The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02273j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel sunlight-promoted approach for the selective synthesis of selenated iminoisobenzofurans or isoindolinones via the aerobic O-cyclization or N-cyclization of olefinic amides with diselenides has been developed.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
32
|
Chen W, Li T, Peng X. Visible-light-promoted thiocyanation of sp 2 C–H bonds over heterogeneous graphitic carbon nitrides. NEW J CHEM 2021. [DOI: 10.1039/d1nj00532d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous graphitic carbon nitride (mpg-C3N4) is developed as a practical heterogeneous photocatalyst for C–S bond formation.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Tingzhen Li
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
33
|
Raji Reddy C, Ajaykumar U, Kolgave DH. Expeditious Access to Spiro-Fused 2,5-Cyclohexadienones via Thio(seleno)cyanative ipso-Cyclization. J Org Chem 2020; 85:15521-15531. [PMID: 33225702 DOI: 10.1021/acs.joc.0c02270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A facile oxidative dearomatization of N-(p-methoxyaryl)propiolamides has been established for the synthesis of spiro-fused 2,5-cyclohexadienone frameworks via thio(seleno)cyanative ipso-cyclization in the presence of ceric ammonium nitrate (CAN) as the oxidant. The present method, involving the formation of C-S and C-C bonds, was also extended to (p-methoxyaryl)propiolates for thiocyanative ipso-cyclization. Furthermore, the obtained chalcogeno-spirocyclohexadienones were transformed into uniquely functionalized spirocyclohexadienone derivatives.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Dai P, Li C, Li Y, Xia Q, Zhang M, Gu Y, Zhang W. Transition‐Metal‐Free Csp
2
−H Regioselective Thiocyanation of Free Anilines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Warfield RG42 6EY United Kingdom (UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China) E-mail address
| |
Collapse
|
35
|
Wang Q, Tian P, Cao Z, Zhang H, Jiang C. Copper‐Catalyzed Remote Direct Thiocyanation of Alkyl C(
sp
3
)−H Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qian Wang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Peiyuan Tian
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Zhong‐Yan Cao
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 People's Republic of China
| | - Hongwei Zhang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Cuiyu Jiang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| |
Collapse
|
36
|
Zhu YS, Xue Y, Liu W, Zhu X, Hao XQ, Song MP. Temperature-Controlled Chalcogenation and Chalcogenocyanation of Imidazopyridines in Water under Transition Metal-Free Conditions. J Org Chem 2020; 85:9106-9116. [DOI: 10.1021/acs.joc.0c01035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yu-Shen Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wannian Liu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
37
|
Qumruddeen, Yadav A, Kant R, Tripathi CB. Lewis Base/Brønsted Acid Cocatalysis for Thiocyanation of Amides and Thioamides. J Org Chem 2020; 85:2814-2822. [PMID: 31922410 DOI: 10.1021/acs.joc.9b03275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lewis base/Brønsted acid cocatalysis for electrophilic thiocyanation of olefins is reported. Using a combination of triphenylphosphine selenide and diphenyl phosphate as a catalyst, a wide range of unsaturated amides and thioamides underwent thiocyanation to furnish thiocyanated thiazoline and oxazoline derivatives in high yields (up to 97%).
Collapse
Affiliation(s)
- Qumruddeen
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | - Arun Yadav
- Academy of Scientific and Innovative Research , New Delhi 110001 , India
| | | | | |
Collapse
|
38
|
Xie Q, Long HJ, Zhang QY, Tang P, Deng J. Enantioselective Syntheses of 4 H-3,1-Benzoxazines via Catalytic Asymmetric Chlorocyclization of o-Vinylanilides. J Org Chem 2020; 85:1882-1893. [PMID: 31880445 DOI: 10.1021/acs.joc.9b02395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic asymmetric halocyclization of alkene is a powerful and straightforward strategy for the synthesis of chiral heterocyclic compounds. Herein, an effective approach to chiral benzoxazine derivatives through organocatalyzed chlorocyclization of o-vinylanilides was reported. This method provides facile access to a series of chiral benzoxazines in good to excellent yields (up to 99% yield) and with high-level enantiocontrol (up to 92% ee).
Collapse
Affiliation(s)
- Qinxia Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Hai-Jiao Long
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Qiong-Yin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Pei Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| |
Collapse
|
39
|
Mao X, Ni J, Xu B, Ding C. K2S2O8-promoted direct thiocyanation of pyrazolin-5-ones with ammonium thiocyanate at room temperature. Org Chem Front 2020. [DOI: 10.1039/c9qo01174a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile and efficient approach for the direct thiocyanation of pyrazolin-5-ones under mild conditions has been established for the first time.
Collapse
Affiliation(s)
- Xiaokang Mao
- Department of Chemistry
- Innovative Drug Research Center
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Jiabin Ni
- CAS Key Laboratory of Receptor Research
- and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
| | - Bin Xu
- Department of Chemistry
- Innovative Drug Research Center
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research
- and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
40
|
Qi L, Liu S, Xiao L. Regio- and stereoselective thiocyanatothiolation of alkynes and alkenes by using NH4SCN and N-thiosuccinimides. RSC Adv 2020; 10:33450-33454. [PMID: 35515071 PMCID: PMC9056709 DOI: 10.1039/d0ra06913b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
A highly regioselective thiocyanatothiolation of alkynes and alkenes assisted by hydrogen bonding under simple and mild conditions is developed. Our thiocyanatothiolation reagents are readily available ammonium thiocyanate and N-thiosuccinimides. This metal-free system offers good chemical yields for a wide range of alkyne and alkene substrates with good functional group tolerance. A highly regioselective thiocyanatothiolation of alkynes assisted by hydrogen bonding under simple and mild conditions is developed.![]()
Collapse
Affiliation(s)
- Liang Qi
- Jiangsu Vocational College of Medicine
- Yancheng
- China
| | - Shiwen Liu
- College of Textiles and Clothing
- Yancheng Institute of Technology
- Yancheng
- China
| | - Linxia Xiao
- Jiangsu Vocational College of Medicine
- Yancheng
- China
| |
Collapse
|
41
|
Kumar S, Padala K. The recent advances in K2S2O8-mediated cyclization/coupling reactions via an oxidative transformation. Chem Commun (Camb) 2020; 56:15101-15117. [DOI: 10.1039/d0cc06036d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently the K2S2O8 mediated cyclization/coupling reactions to construct carbon–carbon/carbon–heteroatom bond via oxidative transformation is became much interesting in organic synthesis.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore
- India
| | - Kishor Padala
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
42
|
Zhang YA, Ding Z, Liu P, Guo WS, Wen LR, Li M. Access to SCN-containing thiazolines via electrochemical regioselective thiocyanothiocyclization of N-allylthioamides. Org Chem Front 2020. [DOI: 10.1039/d0qo00300j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An electrochemical thiocyclization of N-allylthioamides has been developed for the synthesis of SCN-containing 2-thiazolines and NCS-containing thiazines.
Collapse
Affiliation(s)
- Yan-An Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Zhong Ding
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Peng Liu
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Wei-Si Guo
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
43
|
He TJ, Zhong WQ, Huang JM. The synthesis of sulfonated 4H-3,1-benzoxazines via an electro-chemical radical cascade cyclization. Chem Commun (Camb) 2020; 56:2735-2738. [DOI: 10.1039/c9cc09551a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We achieved sulfonated 4H-3,1-benzoxazines under ambient conditions without any metals and external chemical oxidants via electrochemical radical cascade cyclizations.
Collapse
Affiliation(s)
- Tian-Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
44
|
Redox-neutral photocatalytic cyanomethylation/cyclization cascade of olefinic amides: Access to cyanomethylated benzoxazines. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Meng F, Zhang H, He H, Xu N, Fang Q, Guo K, Cao S, Shi Y, Zhu Y. Copper‐Catalyzed Domino Cyclization/Thiocyanation of Unactivated Olefins: Access to SCN‐Containing Pyrazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Plant ProtectionNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
46
|
Song XF, Ye AH, Xie YY, Dong JW, Chen C, Zhang Y, Chen ZM. Lewis-Acid-Mediated Thiocyano Semipinacol Rearrangement of Allylic Alcohols for Construction of α-Quaternary Center β-Thiocyano Carbonyls. Org Lett 2019; 21:9550-9554. [PMID: 31742419 DOI: 10.1021/acs.orglett.9b03722] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An electrophilic thiocyano semipinacol rearrangement of allylic alcohols has been achieved for the first time by using N-thiocyano-dibenzenesulfonimide (NTSI). This approach provides a direct, simple, and efficient strategy for the formation of thiocyano carbonyl compounds with moderate to excellent yields. Meanwhile, an all-carbon quaternary center was rapidly constructed. In addition, an asymmetric version of this tandem reaction was preliminarily investigated.
Collapse
Affiliation(s)
- Xu-Feng Song
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Jia-Wei Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
47
|
Wu L, Hao Y, Liu Y, Wang Q. Visible-light-induced intramolecular sp 3 C-H oxidation of 2-alkyl-substituted benzamides for the synthesis of functionalized iminoisobenzofurans. Chem Commun (Camb) 2019; 55:13908-13911. [PMID: 31681932 DOI: 10.1039/c9cc07791j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a protocol for the synthesis of functionalized iminoisobenzofurans by means of visible-light-induced intramolecular cyclization reactions of 2-alkyl-substituted benzamides. This one step-economical protocol, which involves intramolecular sp3 C-O bond formation, features mild reaction conditions, exclusive chemoselectivity, and high yields.
Collapse
Affiliation(s)
- Lingang Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | |
Collapse
|
48
|
Tian Y, Ge Y, Zheng L, Yan Q, Ren Y, Wang Z, Zhang K, Wang Z, Zhao J, Li Z. A Free Radical Cascade Difunctionalization of
o
‐Vinylanilides with Simple Ketones and Esters. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yunfei Tian
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Fuction-Oriented Porous MaterialsLuoyang Normal University Luoyang, Henan 471022 P. R. China
| | - Yaxin Ge
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| | - Luping Zheng
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Fuction-Oriented Porous MaterialsLuoyang Normal University Luoyang, Henan 471022 P. R. China
| | - Qinqin Yan
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| | - Yingming Ren
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| | - Zhenguang Wang
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| | - Kailin Zhang
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Fuction-Oriented Porous MaterialsLuoyang Normal University Luoyang, Henan 471022 P. R. China
| | - Jincan Zhao
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| | - Zejiang Li
- College of Chemistry & Environmental Science Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and Key Laboratory of Chemical Biology of Hebei ProvinceHebei University Baoding, Hebei 071002 P. R. China
| |
Collapse
|
49
|
Zhu M, Li R, You Q, Fu W, Guo W. Synthesis of SCF
3
‐Containing Benzoxazines and Oxazolines via a Photoredox‐Catalyzed Radical Trifluoromethylthiolation‐Cyclization of Olefinic Amides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mei Zhu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Rongxia Li
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Qingqing You
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 266042 Qingdao P. R. China
| |
Collapse
|
50
|
Wei W, Liao L, Qin T, Zhao X. Access to Saturated Thiocyano-Containing Azaheterocycles via Selenide-Catalyzed Regio- and Stereoselective Thiocyanoaminocyclization of Alkenes. Org Lett 2019; 21:7846-7850. [DOI: 10.1021/acs.orglett.9b02834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Wei
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|