1
|
Xin H, Yang M, Guan C, Li J, Gao P, Yang X, Duan XH, Guo LN. Iron-Catalyzed Cyanide-Free Synthesis of Alkyl Nitriles: Oxidative Deconstruction of Cycloalkanones with Ammonium Salts and Aerobic Oxidation. Org Lett 2024; 26:2266-2270. [PMID: 38451860 DOI: 10.1021/acs.orglett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A sustainable, cyanide-free synthesis of alkyl nitriles via the aerobic oxidative deconstruction of unstrained cycloalkanones with ammonium salts has been developed. Using inexpensive and stable ammonium salts as the nitrogen source, a variety of alkyl nitriles containing a distal carbonyl group were obtained in good yields under visible-light-promoted iron catalysis. This protocol is characterized by mild conditions, abundant and environmentally benign materials, and high atom and step economy with minimal waste generation. The primary mechanism study revealed that 1O2 is likely to be involved in this reaction.
Collapse
Affiliation(s)
- Hong Xin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyu Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Guan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jialong Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Mao K, Lv L, Li Z. Amine-Induced Selective C-C Bond Cleavage of 2,2,2-Trifluoroethyl Carbonyls for the Synthesis of Ureas and Amides. J Org Chem 2023. [PMID: 37437158 DOI: 10.1021/acs.joc.3c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
An efficient and selective transformation of 2,2,2-trifluoroethyl carbonyls into ureas/amides with amines is reported. This protocol allows the selective cleavage of the C-C bond of 2,2,2-trifluoroethyl carbonyls under transition metal-free and oxidant-free conditions, which is in contrast to the analogous C-F or C-CF3 bond functionalization. This reaction reveals the unexplored reactivity of 2,2,2-trifluoroethyl carbonyls and exhibits a broad substrate range and good functional group tolerance.
Collapse
Affiliation(s)
- Kuantao Mao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
3
|
He Y, Zeng L, Li M, Gu L, Zhang S, Li G. Electrochemical Oxidative C-C Bond Cleavage of Ketones for C-N Bond Formation: A Route to Amides. J Org Chem 2022; 87:12622-12631. [PMID: 36098549 DOI: 10.1021/acs.joc.2c01025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report an efficient electrochemical activation of the C-C bond of aryl ketones for the preparation of amides under catalyst- and external-oxidant-free conditions using aliphatic amines as the N source. Under environmentally benign electrolysis conditions, a series of amides were synthesized in good yield. Our control experiments revealed that electricity plays an important role in this transformation.
Collapse
Affiliation(s)
- Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Liang Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Ming Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Lijun Gu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.,Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shengyong Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China
| |
Collapse
|
4
|
Metal-Free Catalysis in C-C Single-Bond Cleavage: Achievements and Prospects. Top Curr Chem (Cham) 2022; 380:38. [PMID: 35951267 DOI: 10.1007/s41061-022-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 10/15/2022]
Abstract
This review article emphasizes the C-C bond cleavage in organic synthesis via metal-free approach. Conventional organic synthesis mainly deals with the reactive π bonds and polar σ bonds. In contrast, the ubiquitous C-C single bonds are inherently stable and are less reactive, which poses a challenge to synthetic chemists. Although inert, such C-C single-bond cleavage reactions have gained attention amongst synthetic chemists, as they provide unique and more straightforward routes, with significantly fewer steps. Several review articles have been reported regarding the activation and cleavage of C-C bonds using different transition metals. However, given the high cost and toxicity of many of these metals, the development of strategies under metal-free conditions is of utmost importance. Though many research articles have been published in this area, no review article has been reported so far. Herein, we discuss the reactions in a more concise way from the year 2012 to today, with emphasis on important reactions. Mechanisms of all the reactions are also well addressed. We believe that this review will be beneficial for the readers who work in this field.
Collapse
|
5
|
Lv C, Liu D, Muschin T, Bai C, Bao A, Bao YS. From Amides to Urea Derivatives or Carbamates with Chemospecific C-C Bond Cleavage at Room Temperature. Org Chem Front 2022. [DOI: 10.1039/d1qo01922h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ureas and carbamates are common motifs in pharmaceuticals, agrochemicals, biologically active compounds and organocatalysis applications. Herein, we report a significant advance in this area and present the general method...
Collapse
|
6
|
Zheng Y, Liu W, Ren Y, Guo Y, Tian X. Copper‐Catalyzed Cleavage of Aryl C(OH)−C Bonds to Access Aryl Nitriles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Wenbo Liu
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yinggang Guo
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
7
|
Understanding the mechanism(s) of ketone oxidation on VOx/γ-Al2O3. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Ge Y, Ye F, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Palladium-Catalyzed Cascade Carbonylation to α,β-Unsaturated Piperidones via Selective Cleavage of Carbon-Carbon Triple Bonds. Angew Chem Int Ed Engl 2021; 60:22393-22400. [PMID: 34382728 PMCID: PMC8519052 DOI: 10.1002/anie.202108120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Indexed: 12/23/2022]
Abstract
A direct and selective synthesis of α,β-unsaturated piperidones by a new palladium-catalyzed cascade carbonylation is described. In the presented protocol, easily available propargylic alcohols react with aliphatic amines to provide a broad variety of interesting heterocycles. Key to the success of this transformation is a remarkable catalytic cleavage of the present carbon-carbon triple bond by using a specific catalyst with 2-diphenylphosphinopyridine as ligand and appropriate reaction conditions. Mechanistic studies and control experiments revealed branched unsaturated acid 11 as crucial intermediate.
Collapse
Affiliation(s)
- Yao Ge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceHangzhou Normal UniversityNo. 2318, Yuhangtang Road311121HangzhouP. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
9
|
Ge Y, Ye F, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Palladium‐Catalyzed Cascade Carbonylation to α,β‐Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yao Ge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province Hangzhou Normal University No. 2318, Yuhangtang Road 311121 Hangzhou P. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
10
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Kim HY, Oh K. Recent advances in the copper-catalyzed aerobic C sp3-H oxidation strategy. Org Biomol Chem 2021; 19:3569-3583. [PMID: 33908570 DOI: 10.1039/d1ob00081k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interplay between copper catalysts and molecular oxygen provides the opportunity to control the promiscuous catalytic behaviors in aerobic Csp3-H bond oxidations without using stoichiometric amounts of oxidants. This mini-review aims to cover the Cu-catalyzed aerobic benzylic and α-carbonyl Csp3-H oxidations and that of the carbon next to an amine group in the past five years. The development of tandem multicomponent reactions employing aerobic Csp3-H bond oxidations will be discussed to highlight the controlled catalyst behaviors and the catalyst interactions between multiple reaction components.
Collapse
Affiliation(s)
- Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
| |
Collapse
|
12
|
Rammurthy B, Peraka S, Vasu A, Krishna Sai G, Divya Rohini Y, Narender N. Metal‐free Catalytic Esterification of Aryl Alkyl Ketones with Alcohols via Free‐radical Mediated C(sp
3
)−H Bond Oxygenation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Banothu Rammurthy
- Academy of Scientific and Innovative Research, CSIR-HRDG Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
- C & FC Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Swamy Peraka
- Academy of Scientific and Innovative Research, CSIR-HRDG Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
- C & FC Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Amrutham Vasu
- Academy of Scientific and Innovative Research, CSIR-HRDG Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
- C & FC Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Gajula Krishna Sai
- Academy of Scientific and Innovative Research, CSIR-HRDG Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
- C & FC Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Yennamaneni Divya Rohini
- Academy of Scientific and Innovative Research, CSIR-HRDG Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
- C & FC Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Nama Narender
- Academy of Scientific and Innovative Research, CSIR-HRDG Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
- C & FC Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| |
Collapse
|
13
|
Chen T, Zheng X, Wang W, Feng Y, Wang Y, Shen J. C-C Bond Cleavage Initiated Cascade Reaction of β-Enaminones: One-Pot Synthesis of 5-Hydroxy-1 H-pyrrol-2(5 H)-ones. J Org Chem 2021; 86:2917-2928. [PMID: 33439021 DOI: 10.1021/acs.joc.0c02832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An unprecedented C(CO)-C(Ar) bond cleavage of β-enaminones has been realized under mild and transition-metal-free conditions. The cascade transformation based on this C-C bond cleavage involves 1,3-O/C migration and aerobic hydroxylation and leads to various 5-hydroxy-1H-pyrrol-2(5H)-ones with broad functional group tolerance. The application of this methodology has been showcased by preparing 5-alkoxy-1H-pyrrol-2(5H)-one derivatives and a pyrrolo[2,1-a]isoquinolin-3-one derivative.
Collapse
Affiliation(s)
- Ting Chen
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Xiujuan Zheng
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Wenhua Wang
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Yadong Feng
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Yanyun Wang
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Jinhai Shen
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China.,Fujian Key Laboratory of Molecular Medicine, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
14
|
Fang X, Cao J, Ding W, Jin H, Yu X, Wang S. Copper-Catalyzed Aerobic Oxidative Cyclization of 2-Alkynylanilines with Nitrosoarenes: Synthesis of Organic Solid Mechanoluminescence Compounds of 4-Oxo-4 H-cinnolin-2-ium-1-ide. Org Lett 2021; 23:1228-1233. [PMID: 33522243 DOI: 10.1021/acs.orglett.0c04186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Cu(I)/DMAP/air system for the one-pot synthesis of 4-oxo-4H-cinnolin-2-ium-1-ides, which are often difficult to prepare by traditional routes from substituted 2-alkynylanilines and nitrosoarenes, was developed. These 4-oxo-4H-cinnolin-2-ium-1-ides have practical applications as mechanoluminescent materials. Preliminary mechanistic experiments were performed, and a plausible mechanism for this tandem process is proposed. The use of an inexpensive copper catalyst and molecular oxygen as the oxygen source and the oxidant make this an attractive green protocol with potential synthetic applications.
Collapse
Affiliation(s)
- Xiaolan Fang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ji Cao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Weijie Ding
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huile Jin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaochun Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
15
|
C. Malakar C, Singh V, Kumar V, Singh D, Gujjarappa R. Efficient Approach towards the Polysubstituted 4H-Pyran Hybrid Quinolone Derivatives and Subsequent Copper-Catalyzed Hydroxylation of Haloarenes. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Zou D, Gan LS, Yang F, Wang JM, Li LL, Li J. Selective transition metal-free aroylation of diarylmethanes with 2-acyl-imidazolium salts via acyl C–C bond cleavage. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Li H, Liu M, Liu H, Luo N, Zhang C, Wang F. Amine-Mediated Bond Cleavage in Oxidized Lignin Models. CHEMSUSCHEM 2020; 13:4660-4665. [PMID: 32539209 DOI: 10.1002/cssc.202001228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Introducing amines/ammonia into lignin cracking will allow novel bond cleavage pathways. Herein, a method of amines/ammonia-mediated bond cleavage in oxidized lignin β-O-4 models was studied using a copper catalyst at room temperature, demonstrating the effect of the amine source on the selectivity of products. For primary and secondary aliphatic amines, lignin ketone models underwent oxidative Cα -Cβ bond cleavage and Cα -N bond formation to generate aromatic amides. For ammonia, the competition between oxygen and ammonia determined the selectivity between Cα -N and Cβ -N bond formation, generating amides and α-keto amides, respectively. For tertiary amines, the lignin models underwent oxidative Cα -Cβ bond cleavage to benzoic acids. Control experiments indicated that amines act as nucleophiles attacking at the Cα or Cβ position of the oxidized β-O-4 linkage to be cleaved. This study represents a novel example that the breakage of oxidized lignin model can be regulated by amines with a copper catalyst.
Collapse
Affiliation(s)
- Hongji Li
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Meijiang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| | - Chaofeng Zhang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| |
Collapse
|
18
|
Yang GP, Li K, Liu W, Zeng K, Liu YF. Copper-catalyzed aerobic oxidative C-C bond cleavage of simple ketones for the synthesis of amides. Org Biomol Chem 2020; 18:6958-6964. [PMID: 32936187 DOI: 10.1039/d0ob01601b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed oxidative amidation of simple ketones with amines via carbon-carbon (C-C) bond cleavage has been developed. A number of aryl and alkyl ketones could be easily converted to amides using cheap copper salt as the catalyst and O2 as the oxidant with a wide range of amines, including primary and secondary amines. This method shows a notable advantage of the broad scope for the substrate, thus providing a practical approach to amides. A plausible mechanism is proposed based on the preliminary experiments.
Collapse
Affiliation(s)
- Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China.
| | | | | | | | | |
Collapse
|
19
|
Vodnala N, Gujjarappa R, Satheesh V, Gupta R, Kaldhi D, Kabi AK, Malakar CC. Copper‐Catalyzed [2+2+1+1] Annulation for the Regioselective Synthesis of 2,6‐Diarylpyridines
via
C1‐Insertion and Subsequent Cyclization. ChemistrySelect 2020. [DOI: 10.1002/slct.202002968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Vanaparthi Satheesh
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Richa Gupta
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Dhananjaya Kaldhi
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Arup K. Kabi
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| |
Collapse
|
20
|
He J, Dong J, Su L, Wu S, Liu L, Yin SF, Zhou Y. Selective Oxidative Cleavage of 3-Methylindoles with Primary Amines Affording Quinazolinones. Org Lett 2020; 22:2522-2526. [DOI: 10.1021/acs.orglett.0c00271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junhui He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- Department of Educational Science, Hunan First Normal University, Changsha 410205, China
| | - Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lixin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
Yu Y, Zhang Y, Sun C, Shi L, Wang W, Li H. Copper Promoted Aerobic Oxidative C(sp 3)-C(sp 3) Bond Cleavage of N-(2-(Pyridin-2-yl)-ethyl)anilines. J Org Chem 2020; 85:2725-2732. [PMID: 31939303 DOI: 10.1021/acs.joc.9b02919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy of aerobic oxidative C(sp3)-C(sp3) bond cleavage of N-ethylaniline derivatives bearing azaarenes for the synthesis of N-aryl formamides has been developed. This approach was carried out smoothly with the CuI/TEMPO/air system to give N-aryl formamides in yields of 50-90%. With this methodology, a mutagenically active compound was constructed in 90% yield. Moreover, the reaction also provided a one-pot synthetic tool for accessing a promoter of hematopoietic stem cells by difunctionalization in 61% yield.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yong Zhang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Chengyu Sun
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Lei Shi
- Corporate R&D Division , Firmenich Aromatics (China) Co., Ltd. , Shanghai 201108 , China
| | - Wei Wang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,Department of Pharmacology and Toxicology and BIO5 Institute , University of Arizona , 1703 E. Mabel Street , P.O. Box 210207, Tucson , Arizona 85721-0207 , United States
| | - Hao Li
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
22
|
Li J, Meng L, Du X, Liu Q, Xu L, Zhang L, Sun F, Li X, Zhang D, Xiao X, Liu H. Palladium-catalyzed intramolecular aerobic alkenylhydroxylation of allenamides with alkenyl iodides. Org Chem Front 2020. [DOI: 10.1039/d0qo00838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient palladium-catalyzed aerobic alkenylhydroxylation cyclization of allenamide derivatives was developed. Mechanistic studies indicated that the reaction might undergo a radical process.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Long Meng
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xin Du
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Qing Liu
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Liping Xu
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Lizhi Zhang
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Fenggang Sun
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xinjin Li
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Daopeng Zhang
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Hui Liu
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
23
|
Li S, Jie K, Yan W, Pan Q, Zhang M, Wang Y, Fu Z, Guo S, Cai H. Selective C–C bond cleavage of amides fused to 8-aminoquinoline controlled by a catalyst and an oxidant. Chem Commun (Camb) 2020; 56:13820-13823. [DOI: 10.1039/d0cc04960c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, copper-catalyzed direct C–C bond cleavage of amides fused to 8-aminoquinoline as a directing group to form urea in the presence of amines and dioxygen is reported.
Collapse
Affiliation(s)
- Sen Li
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Kun Jie
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Wenjie Yan
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Qingjun Pan
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Min Zhang
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Yufeng Wang
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Zhengjiang Fu
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Shengmei Guo
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Hu Cai
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
24
|
Vodnala N, Gujjarappa R, Polina S, Satheesh V, Kaldhi D, Kabi AK, Malakar CC. An organocatalytic C–C bond cleavage approach: a metal-free and peroxide-free facile method for the synthesis of amide derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj04158k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalyzed C–C bond cleavage approach has been envisioned towards the synthesis of amide derivatives from their corresponding amines and 1,3-dicarbonyls.
Collapse
Affiliation(s)
- Nagaraju Vodnala
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal – 795004
- India
| | - Raghuram Gujjarappa
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal – 795004
- India
| | - Saibabu Polina
- Department of Chemistry
- CHRIST (Deemed to be University)
- Bangalore – 560029
- India
| | - Vanaparthi Satheesh
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa – 3200003
- Israel
| | - Dhananjaya Kaldhi
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal – 795004
- India
| | - Arup K. Kabi
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal – 795004
- India
| | - Chandi C. Malakar
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal – 795004
- India
| |
Collapse
|
25
|
Katta N, Ojha M, Murugan A, Arepally S, Sharada DS. Visible light-mediated photocatalytic oxidative cleavage of activated alkynes via hydroamination: a direct approach to oxamates. RSC Adv 2020; 10:12599-12603. [PMID: 35497603 PMCID: PMC9051298 DOI: 10.1039/c9ra10555g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
The direct oxidative cleavage of activated alkynes via hydroamination has been described using organic photocatalyst under visible-light irradiation at room temperature. In this reaction, the single electron oxidation of an in situ formed enamine followed by radical coupling with an oxidant finally delivers the oxamate. The key features of this photocatalytic reaction are the mild reaction conditions, metal-free organic dye as a photocatalyst, and TBHP playing a dual role as “O” source and for the regeneration of the photocatalyst. The direct oxidative cleavage of activated alkynes via hydroamination has been described using organic photocatalyst under visible-light irradiation at room temperature.![]()
Collapse
Affiliation(s)
- Narenderreddy Katta
- Catalysis & Chemical Biology Laboratory
- Department of Chemistry Indian Institute of Technology Hyderabad
- Sangareddy
- India
| | - Mamata Ojha
- Catalysis & Chemical Biology Laboratory
- Department of Chemistry Indian Institute of Technology Hyderabad
- Sangareddy
- India
| | - Arumugavel Murugan
- Catalysis & Chemical Biology Laboratory
- Department of Chemistry Indian Institute of Technology Hyderabad
- Sangareddy
- India
| | - Sagar Arepally
- Catalysis & Chemical Biology Laboratory
- Department of Chemistry Indian Institute of Technology Hyderabad
- Sangareddy
- India
| | - Duddu S. Sharada
- Catalysis & Chemical Biology Laboratory
- Department of Chemistry Indian Institute of Technology Hyderabad
- Sangareddy
- India
| |
Collapse
|
26
|
Wang T, Chen G, Lu Y, Chen Q, Huo Y, Li X. Intermolecular Multiple Dehydrogenative Cross‐Couplings of Ketones with Boronic Acids and Amines via Copper Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianzhang Wang
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Guowei Chen
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yu‐Jing Lu
- School of Biomedical and Pharmaceutical SciencesGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Qian Chen
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Xianwei Li
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| |
Collapse
|
27
|
Vadivel V, Ganesan R, Kannaiyan V, Vellikannu E, Vijayakumar T. Synthesis of Substituted Isatins from the MBH Adduct of 1,5,6-Trisubstituted Isatins Using (2,4-Dinitrophenyl)hydrazine and K-10 Clay Explored as Protection-Deprotection Chemistry. ACS OMEGA 2019; 4:9563-9568. [PMID: 31460047 PMCID: PMC6648401 DOI: 10.1021/acsomega.9b01002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
An interesting synthetic transformation of protection-deprotection chemistry in an isatin molecule is achieved. Morita-Baylis-Hillman (MBH) adduct formation used as protection of the C-3 position in the isatin molecule is reported. C-C bond cleavage in the MBH adduct of isatin with the help of phenylhydrazine and C=N bond cleavage in the phenylhydrazone derivative of isatin with the help of K10 clay are studied systematically and reported as deprotection.
Collapse
Affiliation(s)
- Vaithiyanathan Vadivel
- Department
of Chemistry, Arignar Anna Government Arts
College, Villupuram (Re-accredited
by the NAAC with “B+” and Affiliated to Thiruvalluvar
University, Vellore), Villupuram, Tamil Nadu 605 602, India
| | - Ravichandran Ganesan
- Department
of Chemistry, Arignar Anna Government Arts
College, Villupuram (Re-accredited
by the NAAC with “B+” and Affiliated to Thiruvalluvar
University, Vellore), Villupuram, Tamil Nadu 605 602, India
| | - Vishnu Kannaiyan
- Department
of Chemistry, Arignar Anna Government Arts
College, Villupuram (Re-accredited
by the NAAC with “B+” and Affiliated to Thiruvalluvar
University, Vellore), Villupuram, Tamil Nadu 605 602, India
| | - Ezhumalai Vellikannu
- Department
of Chemistry, Arignar Anna Government Arts
College, Villupuram (Re-accredited
by the NAAC with “B+” and Affiliated to Thiruvalluvar
University, Vellore), Villupuram, Tamil Nadu 605 602, India
| | | |
Collapse
|
28
|
Sakhare PR, Subramanian P, Kaliappan KP. Copper Catalyzed Oxidative C–C Bond Cleavage of 1,2-Diketones: A Divergent Approach to 1,8-Naphthalimides, Biphenyl-2,2′-dicarboxamides, and N-Heterocyclic Amides. J Org Chem 2019; 84:2112-2125. [DOI: 10.1021/acs.joc.8b03114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka R. Sakhare
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| | | | - Krishna P. Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| |
Collapse
|
29
|
Zhou D, Wang P. Mechanisms of the reaction between benzonitrile and 4‐octyne catalyzed by Ni(PMe3)2: A theoretical investigation. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Da‐Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical EngineeringChina West Normal University Nanchong China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical EngineeringChina West Normal University Nanchong China
| |
Collapse
|
30
|
Peng X, Wang HH, Cao F, Zhang HH, Lu YM, Hu XL, Tan W, Wang Z. TBHP promoted demethylation of α-amino carbonyl compounds: a concise approach to substituted γ-lactams. Org Chem Front 2019. [DOI: 10.1039/c9qo00103d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel tert-butyl hydroperoxide (TBHP) promoted CH2-extrusion reaction of α-amino carbonyl compounds has been developed, which is driven by a demethylenation process to give various ring contraction products γ-lactams under radical conditions.
Collapse
Affiliation(s)
- Xue Peng
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | | | - Ying-Mei Lu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiao-Ling Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Wen Tan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Zhen Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Applied Organic Chemistry
| |
Collapse
|
31
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
32
|
Fan J, Wang S, Chen J, Wu M, Zhang J, Xie M. Synthesis of 2-acetyl trisubstituted furans via copper-mediated deacylation cleavage of unstrained C(sp3)–C(sp2) bonds. Org Chem Front 2019. [DOI: 10.1039/c8qo01139g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A copper-mediated tandem addition/cyclization/carbon–carbon cleavage reaction for the convenient synthesis of 2-acyl trisubstituted furans has been developed.
Collapse
Affiliation(s)
- Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Shengke Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jiahui Chen
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Manyi Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
33
|
Liu B, Cheng L, Hu P, Xu F, Li D, Gu WJ, Han W. Iron-catalyzed oxidative C–C(vinyl) σ-bond cleavage of allylarenes to aryl aldehydes at room temperature with ambient air. Chem Commun (Camb) 2019; 55:4817-4820. [DOI: 10.1039/c9cc01995b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The iron-catalyzed C−C single bond cleavage and oxidation of allylarenes without the assistance of heteroatoms/directing groups to produce aryl aldehydes is disclosed.
Collapse
Affiliation(s)
- Binbin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Lu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Penghui Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Fangning Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Dan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Wei-Jin Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- Key Laboratory of Applied Photochemistry
- School of Chemistry and Materials Science
- Nanjing Normal University
| |
Collapse
|
34
|
Karthik S, Muthuvel K, Gandhi T. Base-Promoted Amidation and Esterification of Imidazolium Salts via Acyl C–C bond Cleavage: Access to Aromatic Amides and Esters. J Org Chem 2018; 84:738-751. [DOI: 10.1021/acs.joc.8b02567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shanmugam Karthik
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| | - Karthick Muthuvel
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
35
|
Jiang YY, Li G, Yang D, Zhang Z, Zhu L, Fan X, Bi S. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage: A Combined Computational and Experimental Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03993] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Guoqing Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Daoshan Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Zhaoshun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ling Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
36
|
Vodnala N, Gujjarappa R, Hazra CK, Kaldhi D, Kabi AK, Beifuss U, Malakar CC. Copper‐Catalyzed Site‐Selective Oxidative C−C Bond Cleavage of Simple Ketones for the Synthesis of Anilides and Paracetamol. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nagaraju Vodnala
- Department of ChemistryNational Institute of Technology Manipur, Langol Imphal – 795004, Manipur
| | - Raghuram Gujjarappa
- Department of ChemistryNational Institute of Technology Manipur, Langol Imphal – 795004, Manipur
| | - Chinmoy K. Hazra
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 305-701 South Korea
| | - Dhananjaya Kaldhi
- Department of ChemistryNational Institute of Technology Manipur, Langol Imphal – 795004, Manipur
| | - Arup. K. Kabi
- Department of ChemistryNational Institute of Technology Manipur, Langol Imphal – 795004, Manipur
| | - Uwe Beifuss
- Institut für ChemieUniversität Hohenheim Garbenstr. 30, D- 70599 Stuttgart Germany
| | - Chandi C. Malakar
- Department of ChemistryNational Institute of Technology Manipur, Langol Imphal – 795004, Manipur
| |
Collapse
|
37
|
Liu CH, Wang Z, Xiao LY, Mukadas, Zhu DS, Zhao YL. Acid/Base-Co-catalyzed Formal Baeyer–Villiger Oxidation Reaction of Ketones: Using Molecular Oxygen as the Oxidant. Org Lett 2018; 20:4862-4866. [DOI: 10.1021/acs.orglett.8b02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Hua Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Li-Yun Xiao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mukadas
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dong-Sheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
38
|
Ni J, Jiang Y, An Z, Yan R. Cleavage of C–C Bonds for the Synthesis of C2-Substituted Quinolines and Indoles by Catalyst-Controlled Tandem Annulation of 2-Vinylanilines and Alkynoates. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jixiang Ni
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Gansu, China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Gansu, China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Gansu, China
| |
Collapse
|
39
|
Digwal CS, Yadav U, Ramya PVS, Swain B, Kamal A. Vanadium‐Catalyzed N‐Benzoylation of 2‐Aminopyridines via Oxidative C(CO)−C(CO) Bond Cleavage of 1,2‐Diketones, N→N′ Aroyl Migration and Hydrolysis of 2‐(Diaroylamino)pyridines. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chander Singh Digwal
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Upasana Yadav
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - P. V. Sri Ramya
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Baijayantimala Swain
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Ahmed Kamal
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
- School of Pharmaceutical Education & ResearchJamia Hamdard University New Delhi 110062 India
| |
Collapse
|
40
|
Jiang YY, Liu TT, Zhang RX, Xu ZY, Sun X, Bi S. Mechanism and Rate-Determining Factors of Amide Bond Formation through Acyl Transfer of Mixed Carboxylic–Carbamic Anhydrides: A Computational Study. J Org Chem 2018; 83:2676-2685. [DOI: 10.1021/acs.joc.7b03107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Tian-Tian Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Rui-Xue Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhong-Yan Xu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xue Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
41
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Yang DS, Wang J, Gao P, Bai ZJ, Duan DZ, Fan MJ. KI-catalyzed oxidative cyclization of α-keto acids and 2-hydrazinopyridines: efficient one-pot synthesis of 1,2,4-triazolo[4,3-a]pyridines. RSC Adv 2018; 8:32597-32600. [PMID: 35547701 PMCID: PMC9086216 DOI: 10.1039/c8ra06215c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
A one-pot approach to 1,2,4-triazolo[4,3-a]pyridines via KI-catalyzed oxidative cyclization was developed with good economical and environmental advantages.
Collapse
Affiliation(s)
- De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Juan Wang
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Zi-Jing Bai
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Dong-Zhu Duan
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| |
Collapse
|
43
|
Wu Q, Li Y, Wang C, Zhang J, Huang M, Kim JK, Wu Y. 1,4-Refunctionalization of β-diketones to γ-keto nitriles via C–C single bond cleavage. Org Chem Front 2018. [DOI: 10.1039/c8qo00556g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 1,4-refunctionalization of β-diketones to γ-keto nitriles was realized via an Fe-catalyzed cascade radical process.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yabo Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Chenyang Wang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jianye Zhang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Mengmeng Huang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jung Keun Kim
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| |
Collapse
|
44
|
Ge B, Lv W, Yu J, Xiao S, Cheng G. Base-promoted C–C bond cleavage for the synthesis of 2,3,4-trisubstituted pyrroles from N-propargyl β-enaminones. Org Chem Front 2018. [DOI: 10.1039/c8qo00801a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis of 2,3,4-trisubstituted pyrroles via base-promoted C–C bond cleavage reaction of N-propargyl β-enaminones is reported.
Collapse
Affiliation(s)
- Bailu Ge
- School of Biomedical Sciences
- Huaqiao University
- Xiamen 361021
- China
| | - Weiwei Lv
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Jia Yu
- School of Biomedical Sciences
- Huaqiao University
- Xiamen 361021
- China
| | - Shangyun Xiao
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guolin Cheng
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
45
|
Xiang JC, Wang ZX, Cheng Y, Ma JT, Wang M, Tang BC, Wu YD, Wu AX. A C-H Oxidation/Two-Fold Cyclization Approach to Imidazopyridoindole Scaffold under Mild Oxidizing Conditions. J Org Chem 2017; 82:13671-13677. [PMID: 29171272 DOI: 10.1021/acs.joc.7b02448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An expeditious one-step synthesis of the imidazopyridoindole scaffold was achieved through the C-H oxidation/two-fold cyclization reaction of methyl ketone and tryptamine derivatives. Mild oxidizing conditions were employed to realize the efficient oxidation of C(sp3)-H bonds, while suppressing overoxidation of the intermediate and ensuring the cross-trapping of two in situ generated acylimine intermediates.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Zi-Xuan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Yan Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Miao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| |
Collapse
|
46
|
Guo G, Wan S, Si X, Jiang Q, Jia Y, Yang L, Zhou W. From Simple to Complex: Rhodium(III)-Catalyzed C-C Bond Cleavage and C-H Bond Functionalization for the Synthesis of 3a,8b-Dihydro-1H-cyclopenta[b]benzofuran-1-ones. Org Lett 2017; 19:5026-5029. [PMID: 28891654 DOI: 10.1021/acs.orglett.7b02052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rhodium(III)-catalyzed strategy for the one-step synthesis of polysubstituted cis-3a,8b-dihydro-1H-cyclopenta[b]benzofuran-1-ones from simple 2'-hydroxychalcones and alkynes is developed. This novel transformation involves a sequential C-C bond cleavage and dehydrogenative annulation, leading to the product bearing a quaternary and a tertiary carbon center. 13C labeling experiments revealed that C-C bond cleavage takes place not only at the C-C(C═O) bond but also at the C≡C bond. This study provides an alternative strategy using C-C bond cleavage thus demonstrating the power of this strategy combined with C-H bond functionalization for assembling complex structures from simple starting materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wang Zhou
- College of Chemical Engineering, Xiangtan University , Xiangtan 411105, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Xue Yuan Road 38, Beijing 100191, China
| |
Collapse
|
47
|
Abstract
The selective oxidation of organic molecules is a fundamentally important component of modern synthetic chemistry. In the past decades, direct oxidative C-H and C-C bond functionalization has proved to be one of the most efficient and straightforward methods to synthesize complex products from simple and readily available starting materials. Among these oxidative processes, the use of molecular oxygen as a green and sustainable oxidant has attracted considerable attention because of its highly atom-economical, abundant, and environmentally friendly characteristics. The development of new protocols using molecular oxygen as an ideal oxidant is highly desirable in oxidation chemistry. More importantly, the oxygenation reaction of simple molecules using molecular oxygen as the oxygen source offers one of the most ideal processes for the construction of O-containing compounds. Aerobic oxidation and oxygenation by enzymes, such as monooxygenase, tyrosinase, and dopamine β-monooxygenase, have been observed in some biological C-H bond hydroxylation processes. Encouraged by these biological transformations, transition-metal- or organocatalyst-catalyzed oxygenation through dioxygen activation has attracted academic and industrial prospects. In this Account, we describe some advances from our group in oxygenation via C-H/C-C bond activation with molecular oxygen as the oxidant and oxygen source for the synthesis of O-containing compounds. Under an atmosphere of O2 (1 atm) or air (1 atm), we have successfully incorporated one or two O atoms from O2 into simple and readily available substrates through C-H, C-C, C═C, and C≡C bond cleavage by transition-metal catalysis, organocatalysis, and photocatalysis. Moreover, we have devised cyclization reactions with molecular oxygen to construct O-heterocycles. Most of these transformations can tolerate a broad range of functional groups. Furthermore, on the basis of isotope labeling experiments, electron paramagnetic resonance spectral analysis, and other mechanistic studies, we have demonstrated that a single electron transfer process via a carbon radical, peroxide radical, or hydroxyl radical is involved in these aerobic oxidation and oxygenation reactions. These protocols provide new approaches for the green synthesis of various α-keto amides, α-keto esters, esters, ketones, aldehydes, formamides, 2-oxoacetamidines, 2-(1H)-pyridones, phenols, tertiary α-hydroxy carbonyls, p-quinols, β-azido alcohols, benzyl alcohols, tryptophols, and oxazoles, which have potential applications in the preparation of natural products, bioactive compounds, and functional materials. In most cases, inexpensive and low-toxicity Cu, Fe, Mn, or NHPI was found to be an efficient catalyst for the transformation. The high efficiency, low cost, high oxygen atom economy, broad substrate scope, and practical operation make the developed oxygenation system very attractive and practical. Moreover, the design of new types of molecular-oxygen- or air-based oxidation and oxygenation reactions can be anticipated.
Collapse
Affiliation(s)
- Yu-Feng Liang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State
Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
48
|
Digwal CS, Yadav U, Ramya PVS, Sana S, Swain B, Kamal A. Vanadium-Catalyzed Oxidative C(CO)–C(CO) Bond Cleavage for C–N Bond Formation: One-Pot Domino Transformation of 1,2-Diketones and Amidines into Imides and Amides. J Org Chem 2017; 82:7332-7345. [DOI: 10.1021/acs.joc.7b00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Upasana Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| |
Collapse
|
49
|
Liu H, Wang M, Li H, Luo N, Xu S, Wang F. New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Deng J, Wen X, Li J. Mechanistic investigation of Rh(i)-catalyzed alkyne–isatin decarbonylative coupling. Org Chem Front 2017. [DOI: 10.1039/c7qo00122c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical studies reveal the ligand role in the Rh(i)-catalyzed alkyne–isatin decarbonylative coupling and account for the origin of chemo- and region-selectivity.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| | - Xiuling Wen
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| | - Juan Li
- Department of Chemistry
- Jinan University
- Guangzhou
- P. R. China
| |
Collapse
|