1
|
Liu X, Wang Q, Zhang Y, Zhang H. Discovery of Anti-Inflammatory Alkaloids from Sponge Stylissa massa Suggests New Biosynthetic Pathways for Pyrrole-Imidazole Alkaloids. Mar Drugs 2024; 22:477. [PMID: 39452885 PMCID: PMC11509139 DOI: 10.3390/md22100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Pyrrole-imidazole alkaloids (PIAs) are a class of marine sponge derived natural products which have complex carbon frameworks and broad bioactivities. In this study, four new alkaloids, stylimassalins A-B (1-2), 3, and 5, together with two known compounds (4 and 6), were isolated from Stylissa massa. Compounds 2, 4, and 6 are the C-2 brominated analogues of 1, 3, and 5, respectively. Their structures display three different scaffolds, of which scaffold 1 (compounds 1,2) is new. A new biosynthetic pathway from oroidin, through spongiacidin, to latonduine and scaffold 1 was proposed by our group, in which the C12-N13-cleavaged compounds of spongiacidin (scaffold 2), dubbed seco-spongiacidins (3 and 4), are recognized as a key bridged scaffold, to afford PIA analogues (1,2 and 5,6). An anti-inflammatory evaluation in a zebrafish inflammation model induced by copper sulphate (CuSO4) demonstrated that stylimassalins A and B (1 and 2) could serve as a promising lead scaffold for treating inflammation.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, China; (X.L.); (Q.W.)
| | - Qi Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, China; (X.L.); (Q.W.)
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Hanting Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, China; (X.L.); (Q.W.)
| |
Collapse
|
2
|
Peng D, Luo X, Zhu R, Tong W, Yang Y, Li G, Wang Q. Tagpyrrollins A and B and Tagpyrrollidone A: Three Pyrrole Steroid Analogues with AKR1B1-Targeting Inhibitory Activity from the Sponges Stylissa massa and Pseudospongosorites suberitoides. Org Lett 2024; 26:5794-5798. [PMID: 38935544 DOI: 10.1021/acs.orglett.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Pyrrole alkaloids (PAs) are a diverse class of natural products with complex carbon frameworks and broad bioactivities that are usually derived from marine sponges. Stylissa massa and Pseudospongosorites suberitoides are two independent sponges collected from the South China Sea in 2013 and 2018, respectively. We discovered PAs are common constituents in both two sponges; more specifically, S. massa produces pyrrole-imidazole alkaloids, and P. suberitoides contains pyrrolidone alkaloids. In this study, three pyrrole steroid metabolites were obtained. Compounds 1 and 2 are a pair of epimers sharing a new 5/7/5/6/6 pentacyclic structural configuration, and compound 3 has a new rigid 5/6/6 tricyclic structure. Interestingly, their scaffolds all possess a 6/6 bicyclic system on the featured classic pyrrole/pyrrolidone skeletons, so-dubbed tagpyrrollins A and B (1 and 2, respectively) and tagpyrrollidone A (3). From a biosynthetic viewpoint, 4,5-dihydroxypent-2-enal probably plays a crucial role in constructing these pyrrole steroid analogues. Based on our previous study on the inhibitory activity of spongiacidin targeting AKR1B1, a drug target for the treatment of chronic diabetic complications, in this study we found that tagpyrrolin A (1) also exhibits an inhibitory effect against AKR1B1.
Collapse
Affiliation(s)
- Di Peng
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiangchao Luo
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Runwei Zhu
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| | - Wenli Tong
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| | - Yanan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Guoqiang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Qi Wang
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, China
| |
Collapse
|
3
|
Cheng M, Tang X, Shao Z, Li G, Yao Q. Cytotoxic Epipolythiodioxopiperazines from the Deep-Sea-Derived Fungus Exophiala mesophila MCCC 3A00939. JOURNAL OF NATURAL PRODUCTS 2023; 86:2342-2347. [PMID: 37807846 DOI: 10.1021/acs.jnatprod.3c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Four new aranotin-type epipolythiodioxopiperazines, graphiumins K-N (1-4), along with four known analogues (5-8), were isolated from the deep-sea-derived fungus Exophiala mesophila MCCC 3A00939. Their structures were elucidated by detailed interpretation of NMR and mass spectrometric data. The absolute configuration of the isolates was deduced by a single-crystal X-ray diffraction analysis and the comparisons of experimental electronic circular dichroism (ECD) data with calculated ECD spectra. Graphiumins K (1) and L (2) exhibited cytotoxic activities against the K562, H69AR, and MDA-MB-231 cancer cells with IC50 values ranging from 2.3 to 5.9 μM.
Collapse
Affiliation(s)
- Meimei Cheng
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, People's Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, People's Republic of China
| |
Collapse
|
4
|
Ekins M, Erpenbeck D, Debitus C, Petek S, Mai T, Wrheide G, Hooper JNA. Revision of the genus Fascaplysinopsis, the type species Fascaplysinopsis reticulata (Hentschel, 1912) (Porifera, Dictyoceratida, Thorectidae) and descriptions of two new genera and seven new species. Zootaxa 2023; 5346:201-241. [PMID: 38221341 DOI: 10.11646/zootaxa.5346.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 01/16/2024]
Abstract
The present study examines the taxonomy of sponge specimens with unique chemistry collectively known as Fascaplysinopsis reticulata (Hentschel, 1912). Examination of Hentschels original species upon which the genus Fascaplysinopsis Bergquist, 1980 was based in conjunction with a comparison with recent Indo-west Pacific collections, using morphological and molecular analyses (ITS and 28S rDNA), revealed extensive variation. Fascaplysinopsis reticulata was found to be a species complex comprising the genus Fascaplysinopsis, as well as two new genera: Skolosachlys gen. nov. and Rubrafasciculus gen. nov. The new species of Fascaplysinopsis described are F. palauensis sp. nov., F. klobos sp. nov. and F. ronquinni sp. nov. The new species of Skolosachlys gen. nov. described herein are: S. enlutea sp. nov. and S. nidus sp. nov. The new species described of Rubrafasciculus gen. nov. includes: R. cerasus sp. nov. and R. fijiensis sp. nov..
Collapse
Affiliation(s)
- Merrick Ekins
- Queensland Museum; PO Box 3300; South Brisbane 4101; Brisbane; Queensland; Australia; Griffith Institute for Drug Discovery; Griffith University; Brisbane 4111; Queensland; Australia; School of Biological Sciences; University of Queensland; St Lucia; Queensland; 4072 Australia.
| | - Dirk Erpenbeck
- Dept. of Earth and Environmental Sciences Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany; GeoBio-Center; Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany.
| | - Ccile Debitus
- IRD; University of Brest; CNRS; Ifremer; LEMAR; F-29280 Plouzan; France; IRD; Univ de la Polynsie franaise; Ifremer; ILM; EIO; F-98713 Papeete; French Polynesia.
| | - Sylvain Petek
- IRD; Univ de la Polynsie franaise; Ifremer; ILM; EIO; F-98713 Papeete; French Polynesia; Institut Louis MalardPapeete ; BP 3098713 Papeete; Tahiti; French Polynesia.
| | - Tepoerau Mai
- Dept. of Earth and Environmental Sciences Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany; GeoBio-Center; Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany; SNSBBayerische Staatssammlung fr Palontologie und Geologie; Richard-Wagner-Str. 10; 80333 Mnchen; Germany.
| | - Gert Wrheide
- Queensland Museum; PO Box 3300; South Brisbane 4101; Brisbane; Queensland; Australia.
| | | |
Collapse
|
5
|
Villaescusa L, Hernández I, Azcune L, Rudi A, Mercero JM, Landa A, Oiarbide M, Palomo C. Rigidified Bis(sulfonyl)ethylenes as Effective Michael Acceptors for Asymmetric Catalysis: Application to the Enantioselective Synthesis of Quaternary Hydantoins. J Org Chem 2023; 88:972-987. [PMID: 36630318 PMCID: PMC10013931 DOI: 10.1021/acs.joc.2c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catalytic, enantio- and diastereoselective addition of hydantoin surrogates II to "rigidified" vinylidene bis(sulfone) reagents is developed, thus overcoming the inability of commonly employed β-substituted vinylic sulfones to react. Adducts are transformed in enantioenriched 5,5-disubstituted hydantoins through hydrolysis and reductive desulfonylation processes providing new structures for eventual bioassays. Density functional theory studies that rationalize the observed reactivity and stereoselectivity trends are also provided.
Collapse
Affiliation(s)
- Leire Villaescusa
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Iker Hernández
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Laura Azcune
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Ainhoa Rudi
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - José M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) & Donostia International Physics Center (DIPC), Donostia 20018, Spain
| | - Aitor Landa
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Mikel Oiarbide
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, Donostia-San Sebastián 20018, Spain
| |
Collapse
|
6
|
Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation. Mar Drugs 2022; 20:md20100649. [PMID: 36286473 PMCID: PMC9604825 DOI: 10.3390/md20100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have various and complicated structures, which is still a challenge for elucidating these compounds, especially for those lacking two-dimensional nuclear magnetic resonance (2D NMR) correlations mainly caused by high C/H ratios or proton-deficient and multiple heteroatoms through the conventional structural analytical methods. We reported a novel module-assembly calculation method named Dooerafa, which included constructing the meta-structures by a grafting method based on the crucial and the limited 2D NMR correlations, ring-contraction strategy based on mechanic force field and quantum chemical theory, and self-assemble calculation in Python programming for shaping up the structural candidates along with DFT-GIAO calculation. This new method, verified by a known alkaloid spiroreticulatine with the structure determined by X-ray diffraction, was performed for the structural elucidation of aaptourinamine isolated from marine sponge Aaptos suberitoides, showing us a brand new scaffold of imidazo [4,5,1-ij]pyrrolo [3,2-f]quinolin-7(8H)-one, which has a biosynthetic relationship with the bioactive and structurally unique aaptamine alkaloid.
Collapse
|
7
|
Bitchagno GTM, Nchiozem-Ngnitedem VA, Melchert D, Fobofou SA. Demystifying racemic natural products in the homochiral world. Nat Rev Chem 2022; 6:806-822. [PMID: 36259059 PMCID: PMC9562063 DOI: 10.1038/s41570-022-00431-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Natural products possess structural complexity, diversity and chirality with attractive functions and biological activities that have significantly impacted drug discovery initiatives. Chiral natural products are abundant in nature but rarely occur as racemates. The occurrence of natural products as racemates is very intriguing from a biosynthetic point of view; as enzymes are chiral molecules, enzymatic reactions generating natural products should be stereospecific and lead to single-enantiomer products. Despite several reports in the literature describing racemic mixtures of stereoisomers isolated from natural sources, there has not been a comprehensive review of these intriguing racemic natural products. The discovery of many more natural racemates and their potential enzymatic sources in recent years allows us to describe the distribution and chemical diversity of this 'class of natural products' to enrich discussions on biosynthesis. In this Review, we describe the chemical classes, occurrence and distribution of pairs of enantiomers in nature and provide insights about recent advances in analytical methods used for their characterization. Special emphasis is on the biosynthesis, including plausible enzymatic and non-enzymatic formation of natural racemates, and their pharmacological significance.
Collapse
Affiliation(s)
- Gabin Thierry M. Bitchagno
- Agrobiosciences, Mohamed IV Polytechnic University, Ben-Guerir, Morocco
- Plant Sciences and Bioeconomy, Rothamsted Research, Harpenden, UK
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Vaderament-A. Nchiozem-Ngnitedem
- Department of Chemistry, University of Dschang, Dschang, Cameroon
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Dennis Melchert
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Serge Alain Fobofou
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| |
Collapse
|
8
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
9
|
Zhang G, Tang X, Luo L, Zhanag X, Li P, Li G. Subergorgines A–E, Five New Suberosanone-Purine Hybrids from the South China Sea Gorgonian Subergorgia suberosa. Bioorg Chem 2022; 128:106040. [DOI: 10.1016/j.bioorg.2022.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
|
10
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
11
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Qi Z, Zhang Z, Yang L, Zhang D, Lu J, Wei J, Wei S, Fu Q, Du X, Yi D. Nitrogen‐Radical‐Triggered Trifunctionalizing
ipso
‐Spirocyclization of Unactivated Alkenes with Vinyl Azides: A Modular Access to Spiroaminal Frameworks. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhongyu Qi
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Li Yang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Di Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province Luzhou 646000 People's Republic of China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University) Guilin 541004 People's Republic of China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Xi Du
- Department of Chemistry, School of Basic Medical Science Southwest Medical University Luzhou 646000 People's Republic of China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
- Department of Pharmacy, Affiliated Hospital Southwest Medical University Luzhou 646000 People's Republic of China
| |
Collapse
|
13
|
Cheng M, Li P, Jiang Y, Tang X, Zhang W, Wang Q, Li G. Penitol A and Penicitols E-I: Citrinin Derivatives from Penicillium citrinum and the Structure Revision of Previously Proposed Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:1345-1352. [PMID: 33847126 DOI: 10.1021/acs.jnatprod.1c00082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Penitol A (1), a new citrinin derivative with a rare tricyclic spiro skeleton, was isolated from a coral-derived strain of the fungus Penicillium citrinum. In addition, penicitols E-I (2-6), five new citrinin analogues, were coisolated. Their structures were determined by an analysis of 1D/2D NMR and HRESIMS data, statistical DP4+ analyses based on DFT-GIAO NMR calculations, quantum chemistry ECD calculations, and a single-crystal X-ray diffraction study. The structures of penicitol A (7) and two related synthetic intermediates were revised. Biological evaluation results revealed that penitol A (1) exhibited cytotoxic activity against K562 tumor cells, with an IC50 value of 8.8 μM. A proposed route of formation of compounds 1-7 was reported.
Collapse
Affiliation(s)
- Meimei Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Yun Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Wenjie Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| |
Collapse
|
14
|
Kulkarni AS, Ramesh E, Srinivasa Reddy D. One‐Pot Oxidation of Secondary Alcohols to
α
‐Hydroxy Ketones: Application to Synthesis of Oxoaplysinopsin D, E, F, & G. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akshay S. Kulkarni
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Eagala Ramesh
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- CSIR-Indian Institute of Integrated Medicine Canal Road Jammu 180001 India
| | - D. Srinivasa Reddy
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- CSIR-Indian Institute of Integrated Medicine Canal Road Jammu 180001 India
| |
Collapse
|
15
|
New from Old: Thorectandrin Alkaloids in a Southern Australian Marine Sponge, Thorectandra choanoides (CMB-01889). Mar Drugs 2021; 19:md19020097. [PMID: 33572064 PMCID: PMC7914882 DOI: 10.3390/md19020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Thorectandra choanoides (CMB-01889) was prioritized as a source of promising new chemistry from a library of 960 southern Australian marine sponge extracts, using a global natural products social (GNPS) molecular networking approach. The sponge was collected at a depth of 45 m. Chemical fractionation followed by detailed spectroscopic analysis led to the discovery of a new tryptophan-derived alkaloid, thorectandrin A (1), with the GNPS cluster revealing a halo of related alkaloids 1a–1n. In considering biosynthetic origins, we propose that Thorectandrachoanoides (CMB-01889) produces four well-known alkaloids, 6-bromo-1′,8-dihydroaplysinopsin (2), 6-bromoaplysinopsin (3), aplysinopsin (4), and 1′,8-dihydroaplysinopsin (10), all of which are susceptible to processing by a putative indoleamine 2,3-dioxygenase-like (IDO) enzyme to 1a–1n. Where the 1′,8-dihydroalkaloids 2 and 10 are fully transformed to stable ring-opened thorectandrins 1 and 1a–1b, and 1h–1j, respectively, the conjugated precursors 3 and 4 are transformed to highly reactive Michael acceptors that during extraction and handling undergo complete transformation to artifacts 1c–1g, and 1k–1n, respectively. Knowledge of the susceptibility of aplysinopsins as substrates for IDOs, and the relative reactivity of Michael acceptor transformation products, informs our understanding of the pharmaceutical potential of this vintage marine pharmacophore. For example, the cancer tissue specificity of IDOs could be exploited for an immunotherapeutic response, with aplysinopsins transforming in situ to Michael acceptor thorectandrins, which covalently bind and inhibit the enzyme.
Collapse
|
16
|
Luo XC, Wang Q, Tang XL, Li PL, Li GQ. One cytotoxic steroid and other two new metabolites from the South China Sea sponge Luffariella variabilis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Luo X, Wang Q, Tang X, Xu J, Wang M, Li P, Li G. Cytotoxic Manoalide-Type Sesterterpenes from the Sponge Luffariella variabilis Collected in the South China Sea. JOURNAL OF NATURAL PRODUCTS 2021; 84:61-70. [PMID: 33371684 DOI: 10.1021/acs.jnatprod.0c01026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thirteen new linear terpenes, including 11 rare acyclic manoalide derivatives (1-11), one polyprenylphenol derivative (12), and one polyprenylbenzaldehyde derivative (13), together with three known compounds (14-16) were isolated from the sponge Luffariella variabilis collected in the South China Sea. The planar structures were resolved by NMR and MS analyses, while the absolute configurations were fully elucidated by NOESY experiments, combined with experimental and calculated ECD spectra, acetal formation, empirical rules of 1H and 13C NMR shifts, DP4+ probability analyses, and Mosher's method. Compounds 1-7, 10, and 13 demonstrated cytotoxic activities against several human cancer cell lines with IC50 values ranging from 2 to 10 μM.
Collapse
Affiliation(s)
- Xiangchao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Jixiang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Mengxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| |
Collapse
|
18
|
Abha Saikia R, Barman D, Dutta A, Jyoti Thakur A. N
1
‐ and
N
3
‐Arylations of Hydantoins Employing Diaryliodonium Salts
via
Copper(I) Catalysis at Room Temperature. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
| | - Dhiraj Barman
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
- Department of Chemistry Shiv Nadar University Greater Noida-201314 Uttar Pradesh India
| | - Anurag Dutta
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
| |
Collapse
|
19
|
Bian C, Wang J, Zhou X, Wu W, Guo R. Recent Advances on Marine Alkaloids from Sponges. Chem Biodivers 2020; 17:e2000186. [PMID: 32562510 DOI: 10.1002/cbdv.202000186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Alkaloids from marine secondary metabolites have received extensive attention from pharmacists in recent years. Miscellaneous alkaloids derived from marine sponges possessed various pharmacological activities including cytotoxicity, antimicrobial, antioxidant, and so on. Herein, we summarized 149 marine alkaloids from sponges based on their structures and bioactivities reported from 2015 to 2020 and analyzed the production environment of marine sponges with rich alkaloids. Moreover, we discussed biosynthesis routes of pyrrole and guanidine alkaloids from marine sponges Agelas and Monanchora. This article will be beneficial for future research on drugs from marine natural products.
Collapse
Affiliation(s)
- Changhao Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jiangming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Xinyi Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| |
Collapse
|
20
|
Wang Q, Sun Y, Yang L, Luo X, de Voogd NJ, Tang X, Li P, Li G. Bishomoscalarane Sesterterpenoids from the Sponge Dysidea granulosa Collected in the South China Sea. JOURNAL OF NATURAL PRODUCTS 2020; 83:516-523. [PMID: 31990554 DOI: 10.1021/acs.jnatprod.9b01202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Granulosane A (1), a new C27 bishomoscalarane sesterterpenoid with a rare 6/6/6/8 tetracyclic skeleton, together with eight additional new C27 bishomoscalarane sesterterpenes (2, 8-14) and five new C26 20,24-bishomo-25-norscalarane sesterterpenes (3-7), were isolated from the marine sponge Dysidea granulosa collected in the South China Sea. Their structures were elucidated by extensive spectroscopic analysis and quantum chemical calculation methods. Compound 4 showed antiproliferative activities against two cancer cell lines.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Yanting Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Lin Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Xiangchao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Nicole J de Voogd
- National Museum of Natural History , PO Box 9517, 2300 RA Leiden , The Netherlands
| | - Xuli Tang
- College of Chemistry and Chemical Engineering , Ocean University of China , Qingdao 266100 , People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory of Marine Drugs and Biological Products , National Laboratory for Marine Science and Technology , Qingdao 266235 , People's Republic of China
| |
Collapse
|
21
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
22
|
Li T, Tang X, Luo X, Wang Q, Liu K, Zhang Y, de Voogd NJ, Yang J, Li P, Li G. Agelanemoechine, a Dimeric Bromopyrrole Alkaloid with a Pro-Angiogenic Effect from the South China Sea Sponge Agelas nemoechinata. Org Lett 2019; 21:9483-9486. [DOI: 10.1021/acs.orglett.9b03683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, People’s Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People’s Republic of China
| | - Xiangchao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- Institutes of Chronic Disease, Qingdao University, Qingdao 266003, People’s Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 28789, People’s Republic of China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 28789, People’s Republic of China
| | - Nicole J. de Voogd
- National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Junjie Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, People’s Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, People’s Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, People’s Republic of China
| |
Collapse
|
23
|
Abstract
Background:
Immunomodulation-based therapy has achieved a breakthrough in
the last decade, which stimulates the passion of searching for potential immunomodulatory
substances in recent years.
Objective:
Marine natural products are a unique source of immunomodulatory substances.
This paper summarized the emerging marine natural small-molecules and related synthesized
derivatives with immunomodulatory activities to provide readers an overview of these bioactive
molecules and their potential in immunomodulation therapy.
Conclusion:
An increasing number of immunomodulatory marine small-molecules with diverse
intriguing structure-skeletons were discovered. They may serve as a basis for further
studies of marine natural products for their chemistry, related mechanism of action and structure-
activity relationships.
Collapse
Affiliation(s)
- Ran Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu-Cheng Gu
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Sengoku T, Shirai A, Takano A, Inuzuka T, Sakamoto M, Takahashi M, Yoda H. Divergent Synthesis of Methylene Lactone- and Methylene Lactam-Based Spiro Compounds: Utility of Amido-Functionalized γ-Hydroxylactam as a Precursor for Cytotoxic N,O- and N,N-Spiro Compounds. J Org Chem 2019; 84:12532-12541. [DOI: 10.1021/acs.joc.9b02038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Anna Shirai
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Ayaka Takano
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masaki Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
25
|
|
26
|
New Antimalarial and Antimicrobial Tryptamine Derivatives from the Marine Sponge Fascaplysinopsis reticulata. Mar Drugs 2019; 17:md17030167. [PMID: 30875899 PMCID: PMC6471642 DOI: 10.3390/md17030167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022] Open
Abstract
Chemical study of the CH2Cl2-MeOH (1:1) extract of the sponge Fascaplysinopsis reticulata collected in Mayotte highlighted three new tryptophan derived alkaloids, 6,6′-bis-(debromo)-gelliusine F (1), 6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3), along with the synthetically known 8-oxo-tryptamine (4) and the three known molecules from the same family, tryptamine (5), (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7). Their structures were elucidated by 1D and 2D NMR spectra and HRESIMS data. All compounds were evaluated for their antimicrobial and their antiplasmodial activities. Regarding antimicrobial activities, the best compounds are (2) and (3), with minimum inhibitory concentration (MIC) of 0.01 and 1 µg/mL, respectively, towards Vibrio natrigens, and (5), with MIC values of 1 µg/mL towards Vibrio carchariae. In addition the known 8-oxo-tryptamine (4) and the mixture of the (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7) showed moderate antiplasmodial activity against Plasmodium falciparum with IC50 values of 8.8 and 8.0 µg/mL, respectively.
Collapse
|
27
|
Aplysinopsin-type and Bromotyrosine-derived Alkaloids from the South China Sea Sponge Fascaplysinopsis reticulata. Sci Rep 2019; 9:2248. [PMID: 30783134 PMCID: PMC6381124 DOI: 10.1038/s41598-019-38696-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/06/2018] [Indexed: 11/08/2022] Open
Abstract
Seven pairs of new oxygenated aplysinopsin-type enantiomers, (+)- and (-)-oxoaplysinopsins A‒G (1‒7), two new bromotyrosine-derived alkaloids, subereamollines C and D (18 and 19), together with ten known compounds (8‒17) were isolated from the Xisha Islands sponge Fascaplysinopsis reticulata. The planar structures were determined by extensive NMR and MS spectroscopic data. Each of the optically pure enantiomers was achieved by chiral HPLC separation. The absolute configurations were assigned by the quantum chemical calculation methods. Compound 19 showed cytotoxicity against Jurkat cell lines with IC50 value of 0.88 μM. Compounds 2, 16 and 17 showed tyrosine phosphatase 1B (PTP1B) inhibition activity with IC50 value ranging from 7.67 to 26.5 μM, stronger than the positive control of acarbose and 1-deoxynojirimycin. A structural activity relationship for the aplysinopsin-type enantiomers were observed in PTP1B inhibition activity of 2 and cytotoxicity of 3 that the dextrorotary (+)-2 and (+)-3 showed stronger activity than the levorotary (-)-2 and (-)-3.
Collapse
|
28
|
Thilmany P, Gérard P, Vanoost A, Deldaele C, Petit L, Evano G. Copper-Mediated N-Arylations of Hydantoins. J Org Chem 2019; 84:392-400. [PMID: 30412408 DOI: 10.1021/acs.joc.8b02284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A set of two broadly applicable procedures for the N-arylation of hydantoins is reported. The first one relies on the use of stoichiometric copper(I) oxide under ligand- and base-free conditions and enables a clean regioselective arylation at the N3 nitrogen atom, while the second one is based on the use of catalytic copper(I) iodide and trans- N, N'-dimethylcyclohexane-1,2-diamine and promotes arylation at the N1 nitrogen atom. Importantly, the combination of these two procedures affords a straightforward entry to diarylated hydantoins.
Collapse
Affiliation(s)
- Pierre Thilmany
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06 , 1050 Brussels , Belgium
| | - Phidéline Gérard
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06 , 1050 Brussels , Belgium
| | - Agathe Vanoost
- Minakem Recherche , 145 Chemin des Lilas , 59310 Beuvry-La-Forêt , France
| | - Christopher Deldaele
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06 , 1050 Brussels , Belgium
| | - Laurent Petit
- Minakem Recherche , 145 Chemin des Lilas , 59310 Beuvry-La-Forêt , France
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP160/06 , 1050 Brussels , Belgium
| |
Collapse
|
29
|
Zhang J, Tang X, Han X, Feng D, Luo X, Ofwegen LV, Li P, Li G. Sarcoglaucins A-I, new antifouling cembrane-type diterpenes from the South China Sea soft coral Sarcophyton glaucum. Org Chem Front 2019. [DOI: 10.1039/c9qo00386j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nine new cembrane diterpenes, named sarcoglaucins A-I (1–9) along with three known analogues, trochelioid (10), 7α-hydroxy-Δ8(19)-deepoxysarcophine (11), and (−)-sartrochine (12), were isolated from the soft coral Sarcophyton glaucum collected at Xisha Islands in the South China Sea.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Xuli Tang
- College of Chemistry and Chemical Engineering
- Ocean University of China
- Qingdao 266100
- People's Republic of China
| | - Xiao Han
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Danqing Feng
- College of Ocean & Earth Sciences
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xiangchao Luo
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | | | - Pinglin Li
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Guoqiang Li
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
30
|
Zhang X, Li PL, Qin GF, Li S, de Voogd NJ, Tang XL, Li GQ. Isolation and Absolute Configurations of Diversiform C 17, C 21 and C 25 Terpenoids from the Marine Sponge Cacospongia sp. Mar Drugs 2018; 17:md17010014. [PMID: 30597876 PMCID: PMC6356455 DOI: 10.3390/md17010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of MeOH extract of a South China Sea sponge Cacospongia sp. yielded 15 terpenoids belonging to three different skeleton-types, including the unusual C17γ-lactone norditerpenoids (1–3), the rare C21 pyridine meroterpenoid (7), and the notable C25 manoalide-type sesterterpenoids (4–6, 8–10). Compounds 1–5 were initially obtained as enantiomers, and were further separated to be optically pure compounds (1a, 1b, 2a, 2b, 3a-r, 3b-r, 4a, 4b, 5a and 5b) by chiral HPLC, with a LiAlH4 reduction aid for 3. Compounds 3a/3b (a pair of inseparable enantiomers), 4a, 5a, 6, and 7 were identified as new compounds, while 1a/1b and 2a/2b were obtained from a natural source and were determined for their absolute configurations for the first time. This is also the first time to encounter enantiomers of the well-known manoalide-type sesterterpenoids from nature. The structures with absolute configurations of the new compounds were unambiguously determined by comprehensive methods including HR-ESI-MS and NMR data analysis, optical rotation comparison, experimental and calculated electronic circular dichroism (ECD), and Mo2(OAc)4 induced circular dichroism (ICD) methods. The cytotoxicity of the isolates against selected human tumor cell lines was evaluated, however, the tested compounds showed no activity against selected cell lines.
Collapse
Affiliation(s)
- Xingwang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Guo-Fei Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Nicole J de Voogd
- National Museum of Natural History, 2300 RA Leiden, The Netherlands.
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
31
|
Chu MJ, Tang XL, Han X, Li T, Luo XC, Jiang MM, van Ofwegen L, Luo LZ, Zhang G, Li PL, Li GQ. Metabolites from the Paracel Islands Soft Coral Sinularia cf. molesta. Mar Drugs 2018; 16:md16120517. [PMID: 30572615 PMCID: PMC6317055 DOI: 10.3390/md16120517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/13/2022] Open
Abstract
Five new oxygenated sesquiterpenes, molestins A–D (1, 3–5) and epi-gibberodione (2), three new cyclopentenone derivatives, ent-sinulolides C, D, and F ((+)-9–(+)-11), one new butenolide derivative, ent-sinulolide H ((+)-13), and one new cembranolide, molestin E (14), together with 14 known related metabolites (6–8, (–)-9–(–)-11, (±)-12, (–)-13, 15–19) were isolated from the Paracel Islands soft coral Sinularia cf. molesta. The structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, quantum chemical calculations, and comparison with the literature data. Compound 5 is the first example of a norsesquiterpene with a de-isopropyl guaiane skeleton isolated from the genus Sinularia. Molestin E (14) exhibited cytotoxicities against HeLa and HCT-116 cell lines with IC50 values of 5.26 and 8.37 μM, respectively. Compounds 4, 5, and 8 showed significant inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 218, 344, and 1.24 μM, respectively.
Collapse
Affiliation(s)
- Mei-Jun Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Tao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Xiang-Chao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Ming-Ming Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Leen van Ofwegen
- Nationaal Natuurhistorisch Museum, 2300 RA Leiden, The Netherlands.
| | - Lian-Zhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China.
| | - Gang Zhang
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China.
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
32
|
Qin GF, Tang XL, de Voogd NJ, Li PL, Li GQ. Cytotoxic components from the Xisha sponge Fascaplysinopsis reticulata. Nat Prod Res 2018; 34:790-796. [PMID: 30445862 DOI: 10.1080/14786419.2018.1502765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new dolabellane diterpenoid, clavirolide H (1), together with eleven known compounds, including two dolabellane diterpenoid (2 and 3), a rare cavernosine-type C17 γ-lactone terpenoid (4), a diketopiperazine (5) and seven sterols (6-12), were isolated from the Xisha sponge Fascaplysinopsis reticulata. Their structures were elucidated by extensive spectroscopic analysis, and the four types of compounds of the above isolates were reported from the genus Fascaplysinopsis for the first time. Selected compounds 1, 4-6 and 9-12 were evaluated for cytotoxic activities against K562, HL-60, Hela, HCT-116, A549, L-02 and BEL-7402 cell lines. Compounds 4-6 and 10-12 showed potent cytotoxicitives against HL-60 with IC50 values ranging from 8.8 to 12.4 μM. Compounds 4 and 5 exhibited weak cytotoxic activities against HeLa with IC50 of 20.7 and 27.4 μM, and 5 also has moderate cytotoxicity against HCT-116 with IC50 of 16.3 μM.[Figure: see text].
Collapse
Affiliation(s)
- Guo-Fei Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, People's Republic of China
| | | | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
33
|
Kotha S, Meshram M, Dommaraju Y. Design and Synthesis of Polycycles, Heterocycles, and Macrocycles via Strategic Utilization of Ring-Closing Metathesis. CHEM REC 2018; 18:1613-1632. [PMID: 29920922 DOI: 10.1002/tcr.201800025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
In this perspective, we summarize new synthetic approaches for the construction of various polycyclic compounds involving ring-closing metathesis as a key step. In this regard, we used ring-closing metathesis in combination with other popular reactions like Suzuki-Miyaura coupling, Claisen rearrangement, Fischer indolization, Grignard addition, Diels-Alder reaction, and [2+2] cycloaddition reaction etc. To this end, a variety of functional molecules such as α-amino acids, cyclophanes, heterocycles, propellanes, spirocycles, and macrocycles have been prepared. The strategies developed and the molecules prepared here play a key role in designing new materials and also act as lead compounds in drug design. The strategies and tactics developed here are useful to design polycycles, macrocycles, and heterocycles of diverse ring systems.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400 076, India
| | - Milind Meshram
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400 076, India
| | - Yuvaraj Dommaraju
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400 076, India
| |
Collapse
|
34
|
Almond-Thynne J, Han J, White AJP, Polyzos A, Parsons PJ, Barrett AGM. Bidirectional Synthesis of Di- tert-butyl (2 S,6 S,8 S)- and (2 R,6 R,8 R)-1,7-Diazaspiro[5.5]undecane-2,8-dicarboxylate and Related Spirodiamines. J Org Chem 2018; 83:6783-6787. [PMID: 29792022 DOI: 10.1021/acs.joc.8b00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient syntheses of both enantiomers of a spirodiamine diester from (l)- and (d)-aspartic acid are described. The key transformation was the conversion of Boc-protected tert-butyl aspartate into the derived aldehyde, two-directional Horner-Wadsworth-Emmons olefination, hydrogenation, and selective acid-catalyzed Boc-deprotection and spirocyclization. An alternative, two-directional approach to derivatives of 1,7-diazaspiro[5.5]undecane is described.
Collapse
Affiliation(s)
| | - Jiaxu Han
- Department of Chemistry , Imperial College London , London , SW7 2AZ , U.K
| | - Andrew J P White
- Department of Chemistry , Imperial College London , London , SW7 2AZ , U.K
| | - Anastasios Polyzos
- CSIRO Manufacturing, Clayton , Victoria 3169 , Australia.,School of Chemistry , University of Melbourne , Parkville , Melbourne , Victoria 3010 , Australia
| | - Philip J Parsons
- Department of Chemistry , Imperial College London , London , SW7 2AZ , U.K
| | | |
Collapse
|
35
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Zhang JY, Lee KH. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38:1614-1660. [PMID: 29485730 DOI: 10.1002/med.21492] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
To follow-up on our prior Part I review, this Part II review summarizes and provides updated literature on novel quinoline and quinazoline alkaloids isolated during the period of 2009-2016, together with the biological activity and the mechanisms of action of these classes of natural products. Over 200 molecules with a broad range of biological activities, including antitumor, antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, hepatoprotective, antioxidant, anti-asthma, antitussive, and other activities, are discussed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China.,School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining, P.R. China
| | - Xiao-Shan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ji-Yu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
37
|
Almond-Thynne J, White AJP, Polyzos A, Rzepa HS, Parsons PJ, Barrett AGM. Synthesis and Reactions of Benzannulated Spiroaminals: Tetrahydrospirobiquinolines. ACS OMEGA 2017; 2:3241-3249. [PMID: 30023690 PMCID: PMC6044889 DOI: 10.1021/acsomega.7b00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/19/2017] [Indexed: 06/08/2023]
Abstract
An efficient two-step synthesis of symmetrical and unsymmetrical tetrahydrospirobiquinolines from o-azidobenzaldehydes is reported. A novel series of tetrahydrospirobiquinolines was prepared by sequential double-aldol condensation with acetone, cyclopentanone, and cyclohexanone to form the corresponding o,o'-diazido-dibenzylidene-acetone, -cyclopentanone, and -cyclohexanone derivatives, respectively, and hydrogenation-spirocyclization. The spirodiamines were further derivatized by electrophilic aromatic bromination, Suzuki coupling, and N-alkylation, all of which proceeded with preservation of the spirocyclic core.
Collapse
Affiliation(s)
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, London SW7 2AZ, England
| | - Anastasios Polyzos
- CSIRO
Manufacturing, Clayton, Victoria 3169, Australia
- School
of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College London, London SW7 2AZ, England
| | - Philip J. Parsons
- Department
of Chemistry, Imperial College London, London SW7 2AZ, England
| | | |
Collapse
|
38
|
Chu MJ, Tang XL, Qin GF, Sun YT, Li L, de Voogd NJ, Li PL, Li GQ. Pyrrole Derivatives and Diterpene Alkaloids from the South China Sea Sponge Agelas nakamurai. Chem Biodivers 2017; 14. [PMID: 28222487 DOI: 10.1002/cbdv.201600446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 11/07/2022]
Abstract
Two pairs of new non-brominated racematic pyrrole derivatives, (±)-nakamurine D (1) and (±)-nakamurine E (2), two new diterpene alkaloids, isoagelasine C (16) and isoagelasidine B (21), together with 13 known pyrrole derivatives ((±)-3 - 15), five known diterpene alkaloids (17 - 20, 22) were isolated from the South China Sea sponge Agelas nakamurai. The racemic mixtures, compounds 1 - 4, were resolved into four pairs of enantiomers, (+)-1 and (-)-1, (+)-2 and (-)-2, (+)-3 and (-)-3, and (+)-4 and (-)-4, by chiral HPLC. The structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses, quantum chemical calculations, quantitative measurements of molar rotations, application of van't Hoff's principle of optical superposition, and comparison with the literature data. The NMR and MS data of compound 3 are reported for the first time, as the structure was listed in SciFinder Scholar with no associated reference. These non-brominated pyrrole derivatives were found in this species for the first time. Compound 18 showed valuable cytotoxicities against HL-60, K562, and HCT-116 cell lines with IC50 values of 12.4, 16.0, and 19.8 μm, respectively. Compounds 16 - 19, 21, and 22 showed potent antifungal activities against Candida albicans with MIC values ranging from 0.59 to 4.69 μg/ml. Compounds 16 - 19 exhibited moderate antibacterial activities against Proteusbacillus vulgaris (MIC values ranging from 9.38 to 18.75 μg/ml).
Collapse
Affiliation(s)
- Mei-Jun Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Xu-Li Tang
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Guo-Fei Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Yan-Ting Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Lei Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Nicole J de Voogd
- National Museum of Natural History, Leiden, 2300 RA, The Netherlands
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
39
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
40
|
Chen K, Dai ML, Pan YQ, Zhang C, Tu SJ, Hao WJ. Regioselective Synthesis of 3-(Imidazol-4-yl) Indolin-2-Ones under Microwave Heating. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ke Chen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou Jiangsu 221116 People's Republic of China
| | - Mei-Ling Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou Jiangsu 221116 People's Republic of China
| | - Yu-Qian Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou Jiangsu 221116 People's Republic of China
| | - Chi Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou Jiangsu 221116 People's Republic of China
| | - Shu-Jiang Tu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou Jiangsu 221116 People's Republic of China
| | - Wen-Juan Hao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering; Jiangsu Normal University; Xuzhou Jiangsu 221116 People's Republic of China
| |
Collapse
|
41
|
An L, Song W, Tang X, de Voogd NJ, wang Q, Chu M, Li P, Li G. Alkaloids and polyketides from the South China Sea sponge Agelas aff. nemoechinata. RSC Adv 2017. [DOI: 10.1039/c6ra27026c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New pyrrole alkaloids, diterpene-adenine alkaloids with cytotoxic activity, and polyketides were isolated from the South China Sea sponge Agelas aff. nemoechinata.
Collapse
Affiliation(s)
- Liang An
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Wenjuan Song
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Xuli Tang
- College of Chemistry and Chemical Engineering
- Ocean University of China
- Qingdao 266100
- People's Republic of China
| | | | - Qi wang
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Meijun Chu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Pinglin Li
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Guoqiang Li
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
42
|
Přichystal J, Schug KA, Lemr K, Novák J, Havlíček V. Structural Analysis of Natural Products. Anal Chem 2016; 88:10338-10346. [PMID: 27661090 DOI: 10.1021/acs.analchem.6b02386] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current mass spectrometry, nuclear magnetic resonance spectroscopy, and X-ray diffraction are presented as structure elucidation tools for analytical chemistry of natural products. Discovering new molecular entities combined with dereplication of known organic compounds represent prerequisites for biological assays and for respective applications as pharmaceuticals or molecular markers. Liquid chromatography is briefly addressed with respect to its use in mass spectrometry- and nuclear magnetic resonance-based metabolomics studies.
Collapse
Affiliation(s)
- Jakub Přichystal
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Kevin A Schug
- The University of Texas at Arlington , Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Karel Lemr
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
43
|
Beniddir MA, Evanno L, Joseph D, Skiredj A, Poupon E. Emergence of diversity and stereochemical outcomes in the biosynthetic pathways of cyclobutane-centered marine alkaloid dimers. Nat Prod Rep 2016; 33:820-42. [DOI: 10.1039/c5np00159e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A deep-sea dive into the ecology and chemistry of surprising cyclobutanes from marine invertebrates.
Collapse
Affiliation(s)
| | - Laurent Evanno
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| | - Delphine Joseph
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| | - Adam Skiredj
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| | - Erwan Poupon
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| |
Collapse
|
44
|
Youssef DTA, Shaala LA, Alshali KZ. Bioactive Hydantoin Alkaloids from the Red Sea Marine Sponge Hemimycale arabica. Mar Drugs 2015; 13:6609-19. [PMID: 26516870 PMCID: PMC4663544 DOI: 10.3390/md13116609] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
In the course of our continuing efforts to identify bioactive secondary metabolites from Red Sea marine invertebrates, we have investigated the sponge Hemimycale arabica. The antimicrobial fraction of an organic extract of the sponge afforded two new hydantoin alkaloids, hemimycalins A and B (2 and 3), together with the previously reported compound (Z)-5-(4-hydroxybenzylidene)imidazolidine-2,4-dione (1). The structures of the compounds were determined by extensive 1D and 2D NMR (COSY, HSQC and HMBC) studies and high-resolution mass spectral determinations. Hemimycalins A (2) and B (3) represent the first examples of the natural N-alkylated hydantoins from the sponge Hemimycale arabica. Compounds 1-3 displayed variable antimicrobial activities against E. coli, S. aureus, and C. albicans. In addition, compound 1 displayed moderate antiproliferative activity against the human cervical carcinoma (HeLa) cell line. These findings provide further insight into the chemical diversity as well as the biological activity of this class of compounds.
Collapse
Affiliation(s)
- Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Lamiaa A Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt.
| | - Khalid Z Alshali
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
45
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as sigillin A from Ceratophysella sigillata.
Collapse
|