1
|
Martínez-Flores S, Mujica-Martinez CA, Polindara-García LA. Pd(II)‐Catalyzed C(sp2/sp3)‐H Arylation of Aryl‐glycinamide Derivatives Using Picolinamide as Directing Group. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastián Martínez-Flores
- Universidad Nacional Autónoma de México: Universidad Nacional Autonoma de Mexico Instituto de Química Ciudad Universitaria 04310 Ciudad de Mexico MEXICO
| | | | - Luis Angel Polindara-García
- Universidad Nacional Autonoma de Mexico Chemistry Institute Ciudad Universitaria 04510 Ciudad de Mexico MEXICO
| |
Collapse
|
2
|
He Q, Yamazaki K, Ano Y, Chatani N. Palladium-Catalyzed Site-Selective [5 + 1] Annulation of Aromatic Amides with Alkenes: Acceleration of β-Hydride Elimination by Maleic Anhydride from Palladacycle. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qiyuan He
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Monodisperse CuPd alloy nanoparticles supported on reduced graphene oxide as efficient catalyst for directed C−H activation. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Dong J, Chen X, Ji F, Liu L, Su L, Mo M, Tang J, Zhou Y. Copper‐mediated simple and direct aerobic oxidative esterification of arylacetonitriles with alcohols/phenols. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jianyu Dong
- Department of Educational Science Hunan First Normal University Changsha China
- College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Xiuling Chen
- College of Chemistry and Chemical Engineering Hunan University Changsha China
- Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology Hubei University of Science and Technology Xianning China
| | - Fangyan Ji
- College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Lixin Liu
- College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Lebin Su
- College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Min Mo
- Department of Educational Science Hunan First Normal University Changsha China
| | - Jian‐Sheng Tang
- Department of Educational Science Hunan First Normal University Changsha China
| | - Yongbo Zhou
- College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
5
|
Wang K, Hou J, Zhang C, Cheng K, Bai R, Xie Y. Palladium‐Catalyzed Picolinamide‐Directed Benzylic C(
sp
3
)−H Chalcogenation with Diaryl Disulfides and Diphenyl Diselenide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiahao Hou
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ke Cheng
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Renren Bai
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
6
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
7
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
8
|
Parella R, Babu SA. Pd(II)-Catalyzed Arylation and Intramolecular Amidation of γ-C(sp3)–H Bonds: En Route to Arylheteroarylmethane and Pyrrolidone Ring Annulated Furan/Thiophene Scaffolds. J Org Chem 2017; 82:7123-7150. [DOI: 10.1021/acs.joc.7b00582] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramarao Parella
- Department Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| |
Collapse
|
9
|
Zhang J, Wu X, Gao Q, Geng X, Zhao P, Wu YD, Wu A. Diamination/Oxidative Cross-Coupling/Bicyclization of Anilines and Methyl Ketones: Direct I2-Promoted Synthesis of 1,2-Fused Oxindoles. Org Lett 2017; 19:408-411. [DOI: 10.1021/acs.orglett.6b03636] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xia Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qinghe Gao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Anxin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
10
|
Zhao HY, Wang HY, Mao S, Xin M, Zhang H, Zhang SQ. Discovery of 2-(pyridin-2-yl)aniline as a directing group for the sp2 C–H bond amination mediated by cupric acetate. Org Biomol Chem 2017; 15:6622-6631. [DOI: 10.1039/c7ob01353a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-(Pyridin-2-yl) aniline was designed as a new, removable directing group in promoting C–H amination mediated by cupric acetate.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Hui-Yan Wang
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Shuai Mao
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Minhang Xin
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - Hao Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- PR China
| |
Collapse
|
11
|
Mou F, Sun Y, Jin W, Zhang Y, Wang B, Liu Z, Guo L, Huang J, Liu C. Reusable ionic liquid-catalyzed oxidative esterification of carboxylic acids with benzylic hydrocarbons via benzylic Csp 3–H bond activation under metal-free conditions. RSC Adv 2017. [DOI: 10.1039/c7ra02788e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A protocol for oxidation of the Csp3–H bond in benzylic hydrocarbons with carboxylic acids using ionic liquid as reusable catalyst has been reported.
Collapse
Affiliation(s)
- Fen Mou
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Yadong Sun
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Weiwei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Yonghong Zhang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Bin Wang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Zhiqing Liu
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Lei Guo
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Jianbin Huang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education
- Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
| |
Collapse
|
12
|
Yu KK, Guo Y, Hu YH, Xu Z, Liu HW, Liao DH, Ji YF. Palladium-Catalyzed Diversemono-Acyloxylation of 5-Alkyl-4-aryl-thiazole-2-carboxylates. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kun-Kun Yu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ying Guo
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ya-Hua Hu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhi Xu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Hong-Wei Liu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Dao-Hua Liao
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ya-Fei Ji
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
13
|
Miao T, Xia D, Li Y, Li P, Wang L. Direct difunctionalization of activated alkynes via domino oxidative benzylation/1,4-aryl migration/decarboxylation reactions under metal-free conditions. Chem Commun (Camb) 2016; 52:3175-8. [DOI: 10.1039/c5cc10084d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The oxidative difunctionalization of aryl alkynoatesviaa tandem oxidative benzylation/1,4-aryl migration/decarboxylation to trisubstituted alkenes was developed under metal-free conditions.
Collapse
Affiliation(s)
- Tao Miao
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Dong Xia
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Yang Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|