1
|
Heim GP, Hirahara M, Dev VM, Agapie T. Synthesis and electronic properties of nitrogen-rich nanographene. Chem Commun (Camb) 2024; 60:7343-7346. [PMID: 38916042 DOI: 10.1039/d4cc01189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A polycyclic aromatic hydrocarbon displaying twelve edge nitrogen centers for a 42 π-electron system is reported. This compound was synthesized via Sonogashira coupling of pyrimidine precursors, [2+2+2] cycloaddition of bis(aryl) alkynes, and anionic cyclodehydrogenation. Spectroscopy, electrochemistry, and computational results suggest a narrowing of the HOMO-LUMO gap compared to the N-free analogue. Metal coordination affects the optical properties of the extended π system.
Collapse
Affiliation(s)
- Gavin P Heim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| | - Masanari Hirahara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| | - Vidhya M Dev
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| |
Collapse
|
2
|
Maier S, Hippchen N, Jester F, Dodds M, Weber M, Skarjan L, Rominger F, Freudenberg J, Bunz UHF. Azaarenes: 13 Rings in a Row by Cyclopentannulation. Angew Chem Int Ed Engl 2023; 62:e202214031. [PMID: 36383088 PMCID: PMC10107455 DOI: 10.1002/anie.202214031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Cyclopentannulation was explored as a strategy to access large, stable azaarenes. Buchwald-Hartwig coupling of previously reported di- and tetrabrominated cyclopentannulated N,N'-dihydrotetraazapentacenes furnished stable azaarenes with up to 13 six-membered rings in a row and a length of 3.1 nm. Their optoelectronic and semi-conducting properties as well as their aromaticity were investigated.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Fabian Jester
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcus Dodds
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michel Weber
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Leon Skarjan
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Deng H, Guo Z, Wang Y, Li K, Zhou Q, Ge C, Xu Z, Sato S, Ma X, Sun Z. Modular synthesis, host-guest complexation and solvation-controlled relaxation of nanohoops with donor-acceptor structures. Chem Sci 2022; 13:14080-14089. [PMID: 36540830 PMCID: PMC9728570 DOI: 10.1039/d2sc05804a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Carbon nanohoops with donor-acceptor (D-A) structures are attractive electronic materials and biological fluorophores, but their synthesis is usually challenging. Moreover, the preparation of D-A nanohoop fluorophores exhibiting high fluorescence quantum yields beyond 500 nm remains a key challenge. This study presents a modular synthetic approach based on an efficient metal-free cyclocondensation reaction that readily produced nine congeners with D-A or donor-acceptor-donor' (D-A-D') structures, one of which is water-soluble. The tailored molecular design of nanohoops enabled a systematic and detailed study of their host-guest complexation with fullerene, optical properties, and charge transfer (CT) dynamics using X-ray crystallography, fluorescence titration, steady and ultrafast transient absorption spectroscopy, and theoretical calculations. The findings revealed intriguing physical properties associated with D-A motifs, such as tight binding with fullerene, moderate fluorescence quantum yields (37-67%) beyond 540 nm, and unique solvation-controlled CT relaxation of D-A-D' nanohoops, where two CT states (D-A and A-D') can be effectively tuned by solvation, resulting in dramatically changed relaxation pathways in different solvents.
Collapse
Affiliation(s)
- Han Deng
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zilong Guo
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Yaxin Wang
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Ke Li
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Qin Zhou
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Chang Ge
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zhanqiang Xu
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Sota Sato
- Department of Applied Chemistry, Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Xiaonan Ma
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300072 China
| |
Collapse
|
4
|
Anabestani H, Nabavi S, Bhadra S. Advances in Flexible Organic Photodetectors: Materials and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3775. [PMID: 36364551 PMCID: PMC9655925 DOI: 10.3390/nano12213775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Future electronics will need to be mechanically flexible and stretchable in order to enable the development of lightweight and conformal applications. In contrast, photodetectors, an integral component of electronic devices, remain rigid, which prevents their integration into everyday life applications. In recent years, significant efforts have been made to overcome the limitations of conventional rigid photodetectors, particularly their low mechanical deformability. One of the most promising routes toward facilitating the fabrication of flexible photodetectors is to replace conventional optoelectronic materials with nanomaterials or organic materials that are intrinsically flexible. Compared with other functional materials, organic polymers and molecules have attracted more attention for photodetection applications due to their excellent photodetection performance, cost-effective solution-fabrication capability, flexible design, and adaptable manufacturing processes. This article comprehensively discusses recent advances in flexible organic photodetectors in terms of optoelectronic, mechanical properties, and hybridization with other material classes. Furthermore, flexible organic photodetector applications in health-monitoring sensors, X-ray detection, and imager devices have been surveyed.
Collapse
|
5
|
Jin E, Yang Q, Ju CW, Chen Q, Landfester K, Bonn M, Müllen K, Liu X, Narita A. A Highly Luminescent Nitrogen-Doped Nanographene as an Acid- and Metal-Sensitive Fluorophore for Optical Imaging. J Am Chem Soc 2021; 143:10403-10412. [PMID: 34224242 PMCID: PMC8283754 DOI: 10.1021/jacs.1c04880] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Dibenzo[hi,st]ovalene (DBOV)
has excellent photophysical properties, including strong fluorescence
and high ambient stability. Moreover, the optical blinking properties
of DBOV have enabled optical super-resolution single-molecule localization
microscopy with an imaging resolution beyond the diffraction limit.
Various organic and inorganic fluorescent probes have been developed
for super-resolution imaging, but those sensitive to pH and/or metal
ions have remained elusive. Here, we report a diaza-derivative of
DBOV (N-DBOV), synthesized in eight steps with a total yield of 15%.
Nitrogen (N)-bearing zigzag edges were formed through oxidative cyclization
of amino groups in the last step. UV–vis and fluorescence spectroscopy
of N-DBOV revealed its promising optical properties comparable to
those of the parent DBOV, while cyclic voltammetry and density functional
theory calculations highlighted its lower orbital energy levels and
potential n-type semiconductor character. Notably,
in contrast to that of the parent DBOV, the strong luminescence of
N-DBOV is dependent on pH and the presence of heavy metal ions, indicating
the potential of N-DBOV in sensing applications. N-DBOV also exhibited
pH-responsive blinking, which enables pH-sensitive super-resolution
imaging. Therefore, N-DBOV appears to be a highly promising candidate
for fluorescence sensing in biology and environmental analytics.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Qiqi Yang
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Cheng-Wei Ju
- Max Planck Institute for Polymer Research, Mainz 55128, Germany.,College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz 55128, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Mainz 55128, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Mandal A, Kim Y, Kim SJ, Park J. Unravelling the fluorescence and semiconductor properties of a new coronene:TCNB charge transfer cocrystal polymorph. CrystEngComm 2021. [DOI: 10.1039/d1ce00741f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The charge transfer-based red emission and expected ambipolar semiconductor properties of a new coronene : TCNB (2 : 3) donor–acceptor cocrystal polymorph are elucidated.
Collapse
Affiliation(s)
- Arkalekha Mandal
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Youngmee Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Sung-Jin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
7
|
Gogoi G, Sahoo SR, Rajbongshi BK, Sahu S, Sarma NS, Sharma S. New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3-benzochalcogenadiazoles: a computational study. J Mol Model 2019; 25:42. [DOI: 10.1007/s00894-019-3922-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
|
8
|
Mora‐Fuentes JP, Riaño A, Cortizo‐Lacalle D, Saeki A, Melle‐Franco M, Mateo‐Alonso A. Giant Star‐Shaped Nitrogen‐Doped Nanographenes. Angew Chem Int Ed Engl 2019; 58:552-556. [DOI: 10.1002/anie.201811015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Alberto Riaño
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
9
|
Mora‐Fuentes JP, Riaño A, Cortizo‐Lacalle D, Saeki A, Melle‐Franco M, Mateo‐Alonso A. Giant Star‐Shaped Nitrogen‐Doped Nanographenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Alberto Riaño
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
10
|
Ultrathin Air-Stable n-Type Organic Phototransistor Array for Conformal Optoelectronics. Sci Rep 2018; 8:16612. [PMID: 30413760 PMCID: PMC6226476 DOI: 10.1038/s41598-018-35062-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/16/2018] [Indexed: 11/08/2022] Open
Abstract
Development of conformal n-channel organic phototransistor (OPT) array is urgent for future applications of organic complementary circuits in portable and wearable electronics and optoelectronics. In this work, the ultrathin conformal OPT array based on air-stable n-type PTCDI-C13H27 was fabricated. The OPT array shows excellent electrical and photoelectrical performance, good device uniformity, and remains stable in electron mobility by 83% after 90 days compared to the initial values. Eventhough mobility, on-state current, off-state current, and photocurrent of PTCDI-C13H27 thin film phototransistor show slight decrease with the decreased bending radius, the device still remains the stable photosensitivity as high as 104 when the device is freely adhered on the 2D surfaces and 3D hemispherical sphere, which is in a class with the highest photosensitivity for perylene diimide derivatives. These results present the promising application potential of our conformable air-stable n-type PTCDI-C13H27 OPTs as the photodetection system of curved artificial compound eyes in wearable and portable electronics and optoelectronics.
Collapse
|
11
|
Hu BL, Zhang K, An C, Schollmeyer D, Pisula W, Baumgarten M. Layered Thiadiazoloquinoxaline-Containing Long Pyrene-Fused N-Heteroacenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ben-Lin Hu
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Ke Zhang
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Cunbin An
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Dieter Schollmeyer
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; 55128 Mainz Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Department of Molecular Physics; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Martin Baumgarten
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
12
|
Hu BL, Zhang K, An C, Schollmeyer D, Pisula W, Baumgarten M. Layered Thiadiazoloquinoxaline-Containing Long Pyrene-Fused N-Heteroacenes. Angew Chem Int Ed Engl 2018; 57:12375-12379. [DOI: 10.1002/anie.201803230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Ben-Lin Hu
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Ke Zhang
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Cunbin An
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Dieter Schollmeyer
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; 55128 Mainz Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Department of Molecular Physics; Lodz University of Technology; Zeromskiego 116 90-924 Lodz Poland
| | - Martin Baumgarten
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
13
|
Švec P, Webre WA, Richards GJ, Labuta J, Wakayama Y, Miklík D, Karr PA, Mori T, Ariga K, D'Souza F, Hill JP. Phenanthroline‐Fused Pyrazinacenes: One‐Pot Synthesis, Tautomerization and a Ru
II
(2,2′‐bpy)
2
Derivative. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pavel Švec
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Heyrovského nám. 2 162 06 Prague Czech Republic
| | - Whitney A. Webre
- Department of Chemistry University of North Texas 1155 Union Circle #305070 Denton Texas USA
| | - Gary J. Richards
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
- Department of Chemistry Ochanomizu University Otsuka 2‐1‐1, Bunkyo‐ku 112‐8610 Tokyo Japan
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
| | - Yutaka Wakayama
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
| | - David Miklík
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
- Deptartment of Organic Materials Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Paul A. Karr
- Department of Physical Sciences and Mathematics Wayne State College 111 Main Street 68787 Wayne Nebraska USA
| | - Toshiyuki Mori
- Solid Oxide Fuel Cell Materials Design Group Center for Green Research on Energy and Environmental Materials National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha 277‐8561 Kashiwa, Chiba Japan
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle #305070 Denton Texas USA
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki, Tsukuba 305‐0044 Ibaraki Japan
| |
Collapse
|
14
|
Narrower HOMO-LUMO gap attained by conformational switching through peripheral polyarylation in 1,4,5,8-tetraaza-9,10-anthraquinodimethanes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ngo TT, Suarez I, Antonicelli G, Cortizo-Lacalle D, Martinez-Pastor JP, Mateo-Alonso A, Mora-Sero I. Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Anti-Solvent Additive Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 27976425 DOI: 10.1002/adma.201604056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/14/2016] [Indexed: 05/14/2023]
Abstract
The efficiency of perovskite optoelectronic devices is increased by a novel method; its suitability for perovskite solar cells, light-emitting diodes, and optical amplifiers is demonstrated. The method is based on the introduction of organic additives during the anti-solvent step in the perovskite thin-film deposition process. Additives passivate grain boundaries reducing non-radiative recombination. The method can be easily extended to other additives.
Collapse
Affiliation(s)
- Thi Tuyen Ngo
- Institute of Advanced Materials (INAM), UniversitatJaume I, 12006, Castelló, Spain
| | - Isaac Suarez
- UMDO, Instituto de Ciencia de los Materiales, Universidad de Valencia, 46071, Valencia, Spain
| | - Gabriella Antonicelli
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastian, Spain
| | - Diego Cortizo-Lacalle
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastian, Spain
| | - Juan P Martinez-Pastor
- UMDO, Instituto de Ciencia de los Materiales, Universidad de Valencia, 46071, Valencia, Spain
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain
| | - Ivan Mora-Sero
- Institute of Advanced Materials (INAM), UniversitatJaume I, 12006, Castelló, Spain
| |
Collapse
|
16
|
Liu S, Shi X, Hu Y, Zhang X, Sun W, Qi Y, Fu N, Zhao B, Huang W. Palladium-catalyzed carbonylative annulation toward new [1,2,5]thiadiazole-fused heteroacenes for solution-processed field-effect transistors. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Shi X, Liu S, Liu C, Hu Y, Shi S, Fu N, Zhao B, Wang Z, Huang W. Highly Contorted 1,2,5-Thiadiazole-Fused Aromatics for Solution-Processed Field-Effect Transistors: Synthesis and Properties. Chem Asian J 2016; 11:2188-200. [DOI: 10.1002/asia.201600675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Shi
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Shuli Liu
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Chunming Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Yueming Hu
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Saihua Shi
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Nina Fu
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Baomin Zhao
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Zhaohui Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays; Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 P.R. China
- Key Laboratory of Flexible Electronics (KLOFE); Institute of Advanced Materials (IAM); Jiangsu National; Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (Nanjing Tech); 30 South Puzhu Road Nanjing 211816 P.R. China
| |
Collapse
|