1
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
3
|
Liu R, Wang J, Wu H, Quan X, Wang S, Guo J, Wang Y, Li H. Stereocontrol in an intermolecular Schmidt reaction of equilibrating hydroxyalkyl allylic azides. Chem Commun (Camb) 2024; 60:4362-4365. [PMID: 38563154 DOI: 10.1039/d4cc00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A selective intermolecular Schmidt reaction of equilibrating hydroxyalkyl allylic azides is reported to afford N-hydroxyalk-1-en-3-yl lactams in modest to high yields. For prochiral and chiral ketones, modest to high 1,5-diastereoselectivity was achieved, and the mechanistic analysis is supported by DFT calculation.
Collapse
Affiliation(s)
- Ruzhang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xianfeng Quan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Shilin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jiandong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Heting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
4
|
Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and Strategies for Stereoselective Synthesis of Piperidine Iminosugars. CHEM REC 2021; 21:2958-2979. [PMID: 34713557 DOI: 10.1002/tcr.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Collapse
Affiliation(s)
- Debashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,Unité de Chimie des Biomolécules, UMR 3523 CNRS, Institut Pasteur, Université de Paris, 28 rue du Dr Roux, 75015, Paris, France
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Jack Bennett
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
5
|
Liu R, Zhang Y, Xu J. Selective hydroboration of equilibrating allylic azides. Chem Commun (Camb) 2021; 57:8913-8916. [PMID: 35225991 DOI: 10.1039/d1cc02520a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The iridium(I)-catalyzed hydroboration of equilibrating allylic azides is reported to provide only the anti-Markovnikov product of alk-1-ene isomers in good yields and with good functional group tolerance.
Collapse
Affiliation(s)
- Ruzhang Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd, Yangzhou 225002, China.
| | - Yuanyuan Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd, Yangzhou 225002, China.
| | - Jun Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd, Yangzhou 225002, China.
| |
Collapse
|
6
|
Puet A, Domínguez G, Cañada FJ, Pérez-Castells J. Synthesis and Evaluation of Novel Iminosugars Prepared from Natural Amino Acids. Molecules 2021; 26:molecules26020394. [PMID: 33451060 PMCID: PMC7828477 DOI: 10.3390/molecules26020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclopropanated iminosugars have a locked conformation that may enhance the inhibitory activity and selectivity against different glycosidases. We show the synthesis of new cyclopropane-containing piperidines bearing five stereogenic centers from natural amino acids l-serine and l-alanine. Those prepared from the latter amino acid may mimic l-fucose, a natural-occurring monosaccharide involved in many molecular recognition events. Final compounds prepared from l-serine bear S configurations on the C5 position. The synthesis involved a stereoselective cyclopropanation reaction of an α,β-unsaturated piperidone, which was prepared through a ring-closing metathesis. The final compounds were tested as possible inhibitors of different glycosidases. The results, although, in general, with low inhibition activity, showed selectivity, depending on the compound and enzyme, and in some cases, an unexpected activity enhancement was observed.
Collapse
Affiliation(s)
- Alejandro Puet
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (A.P.); (G.D.)
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (A.P.); (G.D.)
| | - Francisco Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maetzu 9, 28040 Madrid, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (A.P.); (G.D.)
- Correspondence: ; Tel.: +34-913724700
| |
Collapse
|
7
|
Puet A, Domínguez G, Cañada FJ, Pérez-Castells J. Amino Acid-Based Synthesis and Glycosidase Inhibition of Cyclopropane-Containing Iminosugars. ACS OMEGA 2020; 5:31821-31830. [PMID: 33344836 PMCID: PMC7745444 DOI: 10.1021/acsomega.0c04589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/29/2020] [Indexed: 05/04/2023]
Abstract
Synthesis of four iminosugars fused to a cyclopropane ring is described using l-serine as the chiral pool. The key steps are large-scale preparation of an α,β-unsaturated piperidinone followed by completely stereoselective sulfur ylide cyclopropanation. Stereochemistry of compounds has been studied by nuclear Overhauser effect spectroscopy (NOESY) experiments and 1H homonuclear decoupling to measure constant couplings. The activity of these compounds against different glycosidases has been evaluated. Although inhibition activity was low (compound 8a presents a (K i) of 1.18 mM against β-galactosidase from Escherichia coli), interestingly, we found that compounds 8a and 8b increase the activity of neuraminidase from Vibrio cholerae up to 100%.
Collapse
Affiliation(s)
- Alejandro Puet
- Department
of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department
of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | - F. Javier Cañada
- Dep.
Biología FisicoQuímica, CIB
Margarita Salas, CSIC,
C/Ramiro de Maetzu 9, 28040 Madrid, Spain
- CIBER
de Enfermedades Respiratorias (CIBERES), Avda, Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Javier Pérez-Castells
- Department
of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
- E-mail:
| |
Collapse
|
8
|
(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol. MOLBANK 2020. [DOI: 10.3390/m1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol was isolated in 18% after treating the glucose derived (5R,6S,7R)-5,6,7-tris[(triethylsilyl)oxy]nona-1,8-dien-4-one with (1S)-(+)-10-camphorsulfonic acid (CSA). The one-pot formation of the title compound involved triethylsilyl (TES) removal, alkene isomerization, intramolecular conjugate addition and ketal formation. The compound was characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry and IR spectroscopy. NMR spectroscopy was used to establish the product structure, including the conformation of its tetrahydropyran ring.
Collapse
|
9
|
Liu R, Wei Z, Wang J, Liu Y, Xue H. Highly selective hydrosilylation of equilibrating allylic azides. Chem Commun (Camb) 2020; 56:5038-5041. [PMID: 32242569 DOI: 10.1039/d0cc01316a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Pt-catalyzed hydrosilylation of equilibrating allylic azides is reported. The reaction provides only one out of four possible hydrosilylation products in good yields and with very high chemoselectivity (alk-1-ene vs. alk-2-ene), regioselectivity (linear vs. branched), and excellent functional group tolerance.
Collapse
Affiliation(s)
- Ruzhang Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd., Yangzhou 225002, China.
| | | | | | | | | |
Collapse
|
10
|
Tjeng AA, Handore KL, Batey RA. Stereocontrolled Microwave-Assisted Domino [3,3]-Sigmatropic Reactions: A Winstein-Overman Rearrangement for the Formation of Differentiated Contiguous C-N Bonds. Org Lett 2020; 22:3050-3055. [PMID: 32223252 DOI: 10.1021/acs.orglett.0c00801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A domino [3,3]-sigmatropic rearrangement sequence employing a sequential reversible allylic azide rearrangement followed by an irreversible Overman reaction provides a new route to the formation of two contiguous C-N bonds. The reaction occurs in a stereocontrolled fashion in two steps from readily available alkenyl epoxides via initial azide anion ring opening of the epoxides.
Collapse
Affiliation(s)
- Andy A Tjeng
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Kishor L Handore
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Robert A Batey
- Davenport Research Laboratories, Dept. of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
11
|
A Route to 1-Deoxynojirimycin and 1-Deoxymannojirimycin Derivatives with Quaternary Centers Adjacent to the Ring Nitrogen from Methyl α-d
-Mannopyranoside. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abstract
Allylic azides are underutilized in organic synthesis when compared to other organic azides or other allylic functionality. This is likely because allylic azides rearrange at room temperature, resulting in a potentially complex mixture of azides. This rearrangement has been termed the Winstein rearrangement. Understanding the mechanism and basic principles governing the allylic azide equilibrium may aid in developing applications for these molecules based on either alkene or azide functionalization. Presented herein is a compilation of the key observations regarding the nature of the allylic azide rearrangement. Mechanistic considerations are explicitly addressed with key examples from the literature.
Collapse
Affiliation(s)
- Amy A Ott
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Carlson AS, Topczewski JJ. Allylic azides: synthesis, reactivity, and the Winstein rearrangement. Org Biomol Chem 2019; 17:4406-4429. [PMID: 30969292 PMCID: PMC6530792 DOI: 10.1039/c8ob03178a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic azides are useful synthetic intermediates, which demonstrate broad reactivity. Unlike most organic azides, allylic azides can spontaneously rearrange to form a mixture of isomers. This rearrangement has been named the Winstein rearrangement. Using allylic azides can result in low yields and azide racemization in some synthetic contexts due to the Winstein rearrangement. Effort has been made to understand the mechanism of the Winstein rearrangement and to take advantage of this process. Several guiding principles can be used to identify which azides will produce a mixture of isomers and which will resist rearrangement. Selective reaction conditions can be used to differentiate the azide isomers in a dynamic manner. This review covers all aspects of allylic azides including their synthesis, their reactivity, the mechanism of the Winstein rearrangement, and reactions that can selectively elaborate an azide isomer. This review covers the literature from Winstein's initial report to early 2019.
Collapse
Affiliation(s)
- Angela S Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
14
|
Frost GB, Mittelstaedt MN, Douglas CJ. Chemoselectivity for Alkene Cleavage by Palladium-Catalyzed Intramolecular Diazo Group Transfer from Azide to Alkene. Chemistry 2019; 25:1727-1732. [DOI: 10.1002/chem.201805904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Grant B. Frost
- Department of Chemistry; University of Minnesota Twin Cities, Smith Hall; 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Michaela N. Mittelstaedt
- Department of Chemistry; University of Minnesota Twin Cities, Smith Hall; 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Christopher J. Douglas
- Department of Chemistry; University of Minnesota Twin Cities, Smith Hall; 207 Pleasant St SE Minneapolis MN 55455 USA
| |
Collapse
|
15
|
Ott AA, Packard MH, Ortuño MA, Johnson A, Suding VP, Cramer CJ, Topczewski JJ. Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. J Org Chem 2018; 83:8214-8224. [PMID: 29870252 DOI: 10.1021/acs.joc.8b00961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The spontaneous rearrangement of allylic azides is thought to be a sigmatropic reaction. Presented herein is a detailed investigation into the rearrangement of several allylic azides. A combination of experiments including equilibrium studies, kinetic analysis, density functional theory calculations, and selective 15N-isotopic labeling are included. We conclude that the Winstein rearrangement occurs by the assumed sigmatropic pathway under most conditions. However, racemization was observed for some cyclic allylic azides. A kinetic analysis of this process is provided, which supports a previously undescribed ionic pathway.
Collapse
Affiliation(s)
- Amy A Ott
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Mary H Packard
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Manuel A Ortuño
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Alayna Johnson
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Victoria P Suding
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Joseph J Topczewski
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
16
|
Tiwari V, Singh A. Expeditious Conversion of Iodoallenes to Iodoenals Mediated by Sodium Azide and Iodine. ChemistrySelect 2018. [DOI: 10.1002/slct.201801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vibha Tiwari
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh India
| | - Anand Singh
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh India
| |
Collapse
|
17
|
Kang HY, Kang YK. Allylic Azide Rearrangements Investigated by Density Functional Theory Calculations. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Han-Young Kang
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk, 28644 Korea
| | - Young Kee Kang
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk, 28644 Korea
| |
Collapse
|
18
|
López E, López LA. Synthesis of Functionalized Cyclopentene Derivatives from Vinyldiazo Compounds and Vinylazides through Sequential Copper-Promoted [3+2] Cycloaddition/Azide Rearrangement. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Enol López
- Departmento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8 33006- Oviedo Spain
| | - Luis A. López
- Departmento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8 33006- Oviedo Spain
| |
Collapse
|
19
|
López E, López LA. Synthesis of Functionalized Cyclopentene Derivatives from Vinyldiazo Compounds and Vinylazides through Sequential Copper-Promoted [3+2] Cycloaddition/Azide Rearrangement. Angew Chem Int Ed Engl 2017; 56:5121-5124. [DOI: 10.1002/anie.201701572] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Enol López
- Departmento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8 33006- Oviedo Spain
| | - Luis A. López
- Departmento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8 33006- Oviedo Spain
| |
Collapse
|
20
|
The Staudinger/aza-Wittig/Grignard reaction as key step for the concise synthesis of 1-C-Alkyl-iminoalditol glycomimetics. Carbohydr Res 2016; 429:62-70. [DOI: 10.1016/j.carres.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/06/2023]
|
21
|
Dale EJ, Ferris DP, Vermeulen NA, Henkelis JJ, Popovs I, Juríček M, Barnes JC, Schneebeli ST, Stoddart JF. Cooperative Reactivity in an Extended-Viologen-Based Cyclophane. J Am Chem Soc 2016; 138:3667-70. [PMID: 26909445 DOI: 10.1021/jacs.6b01368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A tetracationic pyridinium-based cyclophane with a box-like geometry, incorporating two juxtaposed alkyne functions, has been synthesized. The triple bonds are reactive through cycloadditions toward dienes and azides, promoted by the electron-withdrawing nature of the pyridinium rings, as well as by the strain inherent in the cyclophane. The cycloadditions proceeded in high yields, with the cyclophane reacting faster than its acyclic analogue. While the cyclophane contains two reactive triple bonds, there is no evidence for a stable monofunctional intermediate-only starting material and the difunctional product have been detected by (1)H NMR spectroscopy. Molecular modeling of the energy landscape reveals a lower barrier for the kinetically favored second cycloaddition compared with the first one. This situation results in tandem cascading reactions within rigid cyclophanes, where reactions at a first triple bond induce increased reactivity at a distal second alkyne.
Collapse
Affiliation(s)
- Edward J Dale
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Daniel P Ferris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Nicolaas A Vermeulen
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - James J Henkelis
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Ilja Popovs
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Michal Juríček
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Chemistry, University of Basel , CH-4056 Basel, Switzerland
| | - Jonathan C Barnes
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Severin T Schneebeli
- Department of Chemistry, The University of Vermont , Burlington, Vermont 05405, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Dhiman S, Mishra UK, Ramasastry SSV. One-Pot Trimetallic Relay Catalysis: A Unified Approach for the Synthesis of β-Carbolines and Other [c]-Fused Pyridines. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Seema Dhiman
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO Punjab 140306 India
| | - Uttam K. Mishra
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO Punjab 140306 India
| | - S. S. V. Ramasastry
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO Punjab 140306 India
| |
Collapse
|
23
|
Dhiman S, Mishra UK, Ramasastry SSV. One-Pot Trimetallic Relay Catalysis: A Unified Approach for the Synthesis of β-Carbolines and Other [c]-Fused Pyridines. Angew Chem Int Ed Engl 2016; 55:7737-41. [DOI: 10.1002/anie.201600840] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Seema Dhiman
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO Punjab 140306 India
| | - Uttam K. Mishra
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO Punjab 140306 India
| | - S. S. V. Ramasastry
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO Punjab 140306 India
| |
Collapse
|
24
|
Wu FS, Tong W, Liang Y, Wang HS, Teng QH, Pan YM. Cu(i)-catalyzed multicomponent cascade reactions of terminal alkynes, unactivated primary alkyl bromides, CO2 and NaN3. RSC Adv 2016. [DOI: 10.1039/c6ra13080a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have developed a mild, robust, and multicomponent cascade reaction for the synthesis of triazolo-fused dihydrooxazinones from terminal alkynes, unactivated primary alkyl bromides, carbon dioxide and sodium azide.
Collapse
Affiliation(s)
- Fu-song Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- China
| | - Wei Tong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- China
| | - Ying Liang
- School of Life and Environmental Sciences
- Guilin University of Electronic Technology
- Guilin
- China
| | - Heng-shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- China
| | - Qing-hu Teng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- China
| | - Ying-ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|