1
|
Das A, Mandal R, Ravi Sankar HS, Kumaran S, Premkumar JR, Borah D, Sundararaju B. Reversal of Regioselectivity in Asymmetric C-H Bond Annulation with Bromoalkynes under Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315005. [PMID: 38095350 DOI: 10.1002/anie.202315005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 12/30/2023]
Abstract
Metal-catalyzed asymmetric C-H bond annulation strategy offers a versatile platform, allowing the construction of complex P-chiral molecules through atom- and step-economical fashion. However, regioselective insertion of π-coupling partner between M-C bond with high enantio-induction remain elusive. Using commercially available Co(II) salt and chiral-Salox ligands, we demonstrate an unusual protocol for the regio-reversal, enantioselective C-H bond annulation of phosphinamide with bromoalkyne through desymmetrization. The reaction proceeds through ligand-assisted enantiodetermining cyclocobaltation followed by regioselective insertion of bromoalkyne between Co-C, subsequent reductive elimination, and halogen exchange with carboxylate resulted in P-stereogenic compounds in excellent ee (up to >99 %). The isolation of cobaltacycle involved in the catalytic cycle and the outcome of control experiments provide support for a plausible mechanism.
Collapse
Affiliation(s)
- Abir Das
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | | | - Subramani Kumaran
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, 620017, Tiruchirappalli, Tamil Nadu, India
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, Maharashtra, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Dutta U, Prakash G, Devi K, Borah K, Zhang X, Maiti D. Directing group assisted para-selective C-H alkynylation of unbiased arenes enabled by rhodium catalysis. Chem Sci 2023; 14:11381-11388. [PMID: 37886091 PMCID: PMC10599460 DOI: 10.1039/d3sc03528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Regioselective C-H alkynylation of arenes via C-H activation is challenging yet a highly desirable transformation. In this regard, directing group assisted C(sp2)-H alkynylation of arenes offers a unique opportunity to ensure precise regioselectivity. While the existing methods are mainly centered around ortho-C-H alkynylation and a few for meta-C-H alkynylation, the DG-assisted para-selective C-H alkynylation is yet to be reported. Herein we disclose the first report on Rh-catalyzed para-C-H alkynylation of sterically and electronically unbiased arenes. The para-selectivity is achieved with the assistance of a cyano-based directing template and the selectivity remained unaltered irrespective of the steric and electronic influence of the substituents. The post-synthetic modification of synthesized para-alkynylated arenes is also demonstrated. The mechanistic intricacies of the developed protocol are elucidated through experimental and computational studies.
Collapse
Affiliation(s)
- Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kirti Devi
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kongkona Borah
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
3
|
Baghel AS, Pratap R, Kumar A. Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. J Org Chem 2023. [PMID: 37307505 DOI: 10.1021/acs.joc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized aryl(heteroaryl) ketones are present in many natural products as key structural components and serve as basic synthetic building blocks for various organic transformation reactions. Therefore, the development of an effective and sustainable route for making these classes of compounds remains challenging yet highly desirable. Herein, we report a simple and efficient catalytic system for dialkynylation of aromatic/heteroaromatic ketones via a double C-H bond activation in the presence of less expensive ruthenium(II)-salt as a catalyst using the weakly and native carbonyl group as the desired directing group. The developed protocol is highly compatible, tolerant, and sustainable toward various functional groups. The synthetic utility of the developed protocol has been demonstrated through the scale-up synthesis and functional group transformation. Control experiments support the involvement of the base-assisted internal electrophilic substitution (BIES) reaction pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Ramendra Pratap
- Department of Chemistry, Delhi University, Delhi 110007, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
4
|
Tohidi MM, Paymard B, Vasquez-García SR, Fernández-Quiroz D. Recent progress in applications of cobalt catalysts in organic reactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Jothi Murugan S, Jeganmohan M. Cp*Co(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. J Org Chem 2023; 88:1578-1589. [PMID: 36680527 DOI: 10.1021/acs.joc.2c02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient and straightforward strategy for the synthesis of isoquinolones through [4 + 2]-annulation of N-chlorobenzamides with vinyl acetate in the presence of CoCp*(III) catalyst in a regioselective manner is described. Furthermore, the annulation reaction was diversified by using vinyl ketones. By utilizing this strategy, biologically valuable isoquinolone derivatives were prepared in good yields. Subsequently, isoquinolone derivatives were further transformed into 1-chloroisoquinolines in the presence of POCl3. Furthermore, mechanistic investigations such as deuterium labeling study and competition experiment were performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
6
|
Baghel AS, Kumar A. Ru(II)-catalyzed external auxiliary-free primary amide-directed inverse Sonogashira reaction on (hetero)arylamides. Chem Commun (Camb) 2022; 58:11304-11307. [PMID: 36124904 DOI: 10.1039/d2cc03929j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report ruthenium(II)-catalyzed weakly coordinating primary amide-assisted ortho-di-alkynylation of (hetero)arylamides via double C-H bond activation in the presence of bromo-alkynes as coupling partners. The attractive features of the developed strategy lie in the usage of an inexpensive ruthenium(II)-salt, external auxiliary-free directing group and simple reaction conditions, along with a broad substrate scope, high reaction yields and scale-up synthesis.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| |
Collapse
|
7
|
Sasmal S, Prakash G, Dutta U, Laskar R, Lahiri GK, Maiti D. Directing group assisted rhodium catalyzed meta-C-H alkynylation of arenes. Chem Sci 2022; 13:5616-5621. [PMID: 35694332 PMCID: PMC9116288 DOI: 10.1039/d2sc00982j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Site-selective C-H alkynylation of arenes to produce aryl alkynes is a highly desirable transformation due to the prevalence of aryl alkynes in various natural products, drug molecules and in materials. To ensure site-selective C-H functionalization, directing group (DG) assisted C-H activation has been evolved as a useful synthetic tool. In contrast to DG-assisted ortho-C-H activation, distal meta-C-H activation is highly challenging and has attracted significant attention in recent years. However, developments are majorly focused on Pd-based catalytic systems. In order to diversify the scope of distal meta-C-H functionalization, herein we disclosed the first Rh(i) catalyzed meta-C-H alkynylation protocol through the inverse Sonogashira coupling reaction. The protocol is compatible with various substrate classes which include phenylacetic acids, hydrocinnamic acids, 2-phenyl benzoic acids, 2-phenyl phenols, benzyl sulfonates and ether-based scaffolds. The post-synthetic modification of meta-alkynylated arenes is also demonstrated through DG-removal as well as functional group interconversion.
Collapse
Affiliation(s)
- Sheuli Sasmal
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Ranjini Laskar
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | | | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
8
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
9
|
Yao Y, Su S, Wu N, Wu W, Jiang H. The cobalt( ii)-catalyzed acyloxylation of picolinamides with bifunctional silver carboxylate via C–H bond activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt(ii)-catalyzed C–H bond acyloxylation of picolinamides with bifunctional silver carboxylate has been developed. The mild and practical esterification provides an atom-economic route to access to polysubstituted naphthalene compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Nan Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Chang S, Liu H, Shi G, Xia XF, Wang D, Duan ZC. Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous copper–cobalt polymer was synthesized and achieved applications for the N-alkylation of sulfonamides with alcohols, and carboxamides with alcohols.
Collapse
Affiliation(s)
- Shaoze Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqiang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- China Synchem Technology Co., Ltd., Bengbu, Anhui, 233000, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
11
|
Mandal R, Barsu N, Garai B, Das A, Perekalin D, Sundararaju B. Room-temperature C-H bond alkynylation by merging cobalt and photocatalysts. Chem Commun (Camb) 2021; 57:12167-12170. [PMID: 34726212 DOI: 10.1039/d1cc05263b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new protocol is developed for the mono- and bis-ortho-C-H alkynylation of easily accessible benzamide derivatives using alkynyl bromides at room temperature by merging cobalt and photocatalysts. The diverse reactivity of various alkynyl bromides towards the C-H alkynylation and competing C-H/N-H bond annulation reactions has been demonstrated to give the corresponding products in good yields with excellent functional group tolerance.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Nagaraju Barsu
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Bholanath Garai
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Abir Das
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Dmitry Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Basker Sundararaju
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
12
|
Chai XY, Xu HB, Dong L. Cascade Reaction to Selectively Synthesize Multifunctional Indole Derivatives by Ir III -Catalyzed C-H Activation. Chemistry 2021; 27:13123-13127. [PMID: 34369008 DOI: 10.1002/chem.202101602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 11/06/2022]
Abstract
An effective and condition-controlled way to synthesize with high selectivity a variety of functionalized indoles with potent biological properties has been developed. Notably, 2,4-dialkynyl indole products were obtained by direct double C-H bond alkynylation, whereas alkynyl at the C4 position could convert to carbonyl to generate 2-alkynyl-3,4-diacetyl indoles fast and effectively. Additionally, a one-pot relay catalytic reaction led to 2,5-di-alkynyl-3,4-diacetyl indoles when using a carbonyl group as the directing group and by controlling the type and quantity of additives. A possible mechanism was proposed based on many studies including deuterium-exchange experiments, the necessary conditions of product conversion, and the effect of water on the reaction.
Collapse
Affiliation(s)
- Xin-Yue Chai
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
13
|
Lukasevics L, Cizikovs A, Grigorjeva L. Cobalt-Catalyzed C(sp 2)-H Carbonylation of Amino Acids Using Picolinamide as a Traceless Directing Group. Org Lett 2021; 23:2748-2753. [PMID: 33724856 DOI: 10.1021/acs.orglett.1c00660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report an efficient protocol for the C(sp2)-H carbonylation of amino acid derivatives based on an inexpensive cobalt(II) salt catalyst. Carbonylation was accomplished using picolinamide as a traceless directing group, CO (1 atm) as the carbonyl source, and Co(dpm)2 as the catalyst. A broad range of phenylalanine derivatives bearing diverse functional groups were tolerated. Moreover, the method can be successfully applied for the C(sp2)-H carbonylation of short peptides thereby allowing access for peptide late-stage carbonylation.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| |
Collapse
|
14
|
Wang X, Chen Y, Song H, Liu Y, Wang Q. Construction of 2-(2-Arylphenyl)azoles via Cobalt-Catalyzed C-H/C-H Cross-Coupling Reactions and Evaluation of Their Antifungal Activity. Org Lett 2020; 22:9331-9336. [PMID: 33216554 DOI: 10.1021/acs.orglett.0c03551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although compounds with a 2-(2-arylphenyl) benzoxazole motif are biologically important, there are only a few methods for synthesizing them. Herein, we report an efficient method for synthesis of such compounds by means of cobalt-catalyzed C-H/C-H cross-coupling reactions. This method has a broad substrate scope and good tolerance for sensitive functional groups. In addition, we demonstrate that introducing a heteroarene moiety to biphenyl compounds enhanced their antifungal activity.
Collapse
Affiliation(s)
- Xinmou Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
15
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
16
|
Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Mechanistische Studien zu Cobalta(III/IV/II)‐Elektrokatalyse: Oxidativ‐induzierte reduktive Eliminierung zur zweifachen C‐H‐Aktivierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002258] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tjark H. Meyer
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
17
|
Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Insights into Cobalta(III/IV/II)-Electrocatalysis: Oxidation-Induced Reductive Elimination for Twofold C-H Activation. Angew Chem Int Ed Engl 2020; 59:10955-10960. [PMID: 32154625 PMCID: PMC7318662 DOI: 10.1002/anie.202002258] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/17/2022]
Abstract
The merger of cobalt‐catalyzed C−H activation and electrosynthesis provides new avenues for resource‐economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high‐valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt‐catalyzed C−H oxygenations. Detailed mechanistic studies provided support for an oxidatively‐induced reductive elimination via highly‐reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two‐fold C−H/C−H activation.
Collapse
Affiliation(s)
- Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| |
Collapse
|
18
|
Yao Y, Lin Q, Yang W, Yang W, Gu F, Guo W, Yang D. Cobalt(II)-Catalyzed [4+2] Annulation of Picolinamides with Alkynes via C-H Bond Activation. Chemistry 2020; 26:5607-5610. [PMID: 32045038 DOI: 10.1002/chem.202000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/06/2020] [Indexed: 11/08/2022]
Abstract
A cobalt(II)-catalyzed [4+2] annulation of picolinamides with alkynes via C-H bond activation has been developed. The operationally simple annulation reaction allows for the synthesis of acyl-substituted 1H-benzoquinoline bearing multiple aromatic rings (up to 96 % yield) without co-oxidant or other oxidation factors under mild conditions. Several control experiments were carried out. This practical [4+2] annulation provides an efficient route to access highly functionalized compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Qifu Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Wen Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Weitao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Fenglong Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Dingqiao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China, Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Du X, Hou H, Zhao Y, Sheng S, Chen J. Rhodium(III)-Catalyzed Alkynylation of 4-Arylphthalazin-1(2 H
)-one Scaffolds via C-H Bond Activation. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuxin Du
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education and College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang P. R. China
| | - Hongcen Hou
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education and College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang P. R. China
| | - Yongli Zhao
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education and College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang P. R. China
| | - Shouri Sheng
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education and College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang P. R. China
| | - Junmin Chen
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education and College of Chemistry & Chemical Engineering; Jiangxi Normal University; 330022 Nanchang P. R. China
| |
Collapse
|
20
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
21
|
Kwak SH, Daugulis O. N-Iminopyridinium ylide-directed, cobalt-catalysed coupling of sp 2 C-H bonds with alkynes. Chem Commun (Camb) 2020; 56:11070-11073. [PMID: 32812560 DOI: 10.1039/d0cc05294a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Iminopyridinium ylides are competent monodentate directing groups for cobalt-catalysed annulation of sp2 C-H bonds with internal alkynes. The pyridine moiety in the ylide serves as an internal oxidant and is cleaved during the reaction. The annulation reactions possess excellent compatibility with heterocyclic substrates, tolerating furan, thiophene, pyridine, pyrrole, pyrazole, and indole functionalities.
Collapse
Affiliation(s)
- Se Hun Kwak
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
| |
Collapse
|
22
|
Zheng Y, Song W. Pd-Catalyzed Site-Selective C(sp2)–H Olefination and Alkynylation of Phenylalanine Residues in Peptides. Org Lett 2019; 21:3257-3260. [DOI: 10.1021/acs.orglett.9b00987] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Weibin Song
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
23
|
Manoharan R, Jeganmohan M. Cobalt-catalyzed cyclization of benzamides with alkynes: a facile route to isoquinolones with hydrogen evolution. Org Biomol Chem 2019; 16:8384-8389. [PMID: 30209503 DOI: 10.1039/c8ob01924j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of benzamides with alkynes assisted by an 8-aminoquinoline ligand in the presence of Co(OAc)2·4H2O and pivalic acid under an air atmosphere provided isoquinolone derivatives in good to excellent yields. In this reaction, the active Co(iii) species is regenerated by the reaction of Co(i) species with pivalic acid under an air atmosphere with hydrogen evolution. The proposed mechanism was supported by competition experiments, deuterium labelling studies, radical scavenger experiments and kinetic studies.
Collapse
Affiliation(s)
- Ramasamy Manoharan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411021, India
| | | |
Collapse
|
24
|
Ma P, Chen H. Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pengchen Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
25
|
Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Recent advances in cobalt-catalysed C–H functionalizations. Org Biomol Chem 2019; 17:10119-10141. [DOI: 10.1039/c9ob01994d] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ready availability, low cost and low toxicity of cobalt salts have redirected the attention of researchers away from noble metals, such as Pd, Rh, and Ir, towards Co in the field of C–H functionalisation.
Collapse
Affiliation(s)
| | | | - Pravas Dolui
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | | | - Debabrata Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
26
|
Lin C, Shen L. Co-catalyzed ortho-C–H functionalization/annulation of arenes and alkenes with alkynylsilanes: access to isoquinolone and pyridone motifs. RSC Adv 2019; 9:30650-30654. [PMID: 35529370 PMCID: PMC9072155 DOI: 10.1039/c9ra06963a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
A method for cobalt-catalyzed ortho-C–H functionalization annulation of arenes and alkenes with alkynylsilanes assisted by 8-aminoquinolyl auxiliary has been described. Alkynylsilanes were employed as the coupling partners to react with a broad range of benzamides and acrylamides, affording the corresponding isoquinolone and pyridone derivatives in moderate to high yields. It is worth noting that the silyl group in the final products can be retained or removed by switching the reaction conditions. A method for cobalt-catalyzed ortho-C–H functionalization annulation of arenes and alkenes with alkynylsilanes assisted by 8-aminoquinolyl auxiliary.![]()
Collapse
Affiliation(s)
- Cong Lin
- College of Chemistry and Chemical Engineering
- Jiangxi Science & Technology Normal University
- Nanchang 330013
- China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| | - Liang Shen
- College of Chemistry and Chemical Engineering
- Jiangxi Science & Technology Normal University
- Nanchang 330013
- China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| |
Collapse
|
27
|
Zhao T, Qin D, Han W, Yang S, Feng B, Gao G, You J. Co(iii)-catalyzed Z-selective oxidative C–H/C–H cross-coupling of alkenes with triisopropylsilylacetylene. Chem Commun (Camb) 2019; 55:6118-6121. [DOI: 10.1039/c9cc02347j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An inexpensive Co(iii)-catalyzed direct oxidative C–H/C–H cross-coupling reaction of acrylamides with triisopropylsilylacetylene to synthsize (Z)-1,3-enynes is presented.
Collapse
Affiliation(s)
- Tingxing Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Dekun Qin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shiping Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Boya Feng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
28
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
29
|
Gallego D, Baquero EA. Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0102] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AbstractDuring the last ten years, base metals have become very attractive to the organometallic and catalytic community on activation of C-H bonds for their catalytic functionalization. In contrast to the statement that base metals differ on their mode of action most of the manuscripts mistakenly rely on well-studied mechanisms for precious metals while proposing plausible mechanisms. Consequently, few literature examples are found where a thorough mechanistic investigation have been conducted with strong support either by theoretical calculations or experimentation. Therefore, we consider of highly scientific interest reviewing the last advances on mechanistic studies on Fe, Co and Mn on C-H functionalization in order to get a deep insight on how these systems could be handle to either enhance their catalytic activity or to study their own systems in a similar systematic fashion. Thus, in this review we try to cover the most insightful articles for mechanistic studies on C-H activation catalyzed by Fe, Co and Mn based on kinetic and competition experiments, stoichiometric reactions, isolation of intermediates and theoretical calculations.
Collapse
Affiliation(s)
- Daniel Gallego
- Grupo de Química-Física Molecular y Modelamiento Computacional (QUIMOL), Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte No. 39-115, 150003Tunja (Boyacá), Colombia
| | - Edwin A. Baquero
- Grupo de Química Macrocíclica, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, 111321Bogotá D. C. (Cundinamarca), Colombia
| |
Collapse
|
30
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
31
|
Khake SM, Jain S, Patel UN, Gonnade RG, Vanka K, Punji B. Mechanism of Nickel(II)-Catalyzed C(2)–H Alkynylation of Indoles with Alkynyl Bromide. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shrikant M. Khake
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | | | - Ulhas N. Patel
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | | | | | - Benudhar Punji
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| |
Collapse
|
32
|
Peng JB, Wu FP, Wu XF. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem Rev 2018; 119:2090-2127. [DOI: 10.1021/acs.chemrev.8b00068] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Fu-Peng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
33
|
Caspers LD, Nachtsheim BJ. Directing-Group-mediated C−H-Alkynylations. Chem Asian J 2018; 13:1231-1247. [DOI: 10.1002/asia.201800102] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Lucien D. Caspers
- Institut für Organische und Analytische Chemie; Universität Bremen; Leobener Straße NW2C 28359 Bremen Germany
| | - Boris J. Nachtsheim
- Institut für Organische und Analytische Chemie; Universität Bremen; Leobener Straße NW2C 28359 Bremen Germany
| |
Collapse
|
34
|
Usui K, Haines BE, Musaev DG, Sarpong R. Understanding Regiodivergence in a Pd(II)-Mediated Site-Selective C–H Alkynylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kenji Usui
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brandon E. Haines
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Tan E, Quinonero O, Elena de Orbe M, Echavarren AM. Broad-Scope Rh-Catalyzed Inverse-Sonogashira Reaction Directed by Weakly Coordinating Groups. ACS Catal 2018; 8:2166-2172. [PMID: 29527402 PMCID: PMC5838643 DOI: 10.1021/acscatal.7b04395] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/23/2018] [Indexed: 12/21/2022]
Abstract
We report the alkynylation of C(sp2)-H bonds with bromoalkynes (inverse-Sonogashira reaction) directed by synthetically useful ester, ketone, and ether groups under rhodium catalysis. Other less common directing groups such as amine, thioether, sulfoxide, sulfone, phenol ester, and carbamate are also suitable directing groups. Mechanistic studies indicate that the reaction proceeds by a turnover-limiting C-H activation step via an electrophilic-type substitution.
Collapse
Affiliation(s)
- Eric Tan
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ophélie Quinonero
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - M. Elena de Orbe
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
36
|
Lin C, Chen Z, Liu Z, Zhang Y. Direct ortho
-Acyloxylation of Arenes and Alkenes by Cobalt Catalysis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Cong Lin
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 People's Republic of China,
| | - Zhengkai Chen
- Department of Chemistry; Zhejiang Sci-Tech University; Hangzhou 310018 People's Republic of China
| | - Zhanxiang Liu
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 People's Republic of China,
| | - Yuhong Zhang
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 People's Republic of China,
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| |
Collapse
|
37
|
Landge VG, Parveen A, Nandakumar A, Balaraman E. Pd(ii)-Catalyzed gamma-C(sp3)–H alkynylation of amides: selective functionalization of R chains of amides R1C(O)NHR. Chem Commun (Camb) 2018; 54:7483-7486. [DOI: 10.1039/c8cc03445a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of palladium(ii)-catalyzed alkynylation of an unactivated gamma C(sp3)–H bond of alkyl amides (cyclic, linear, and amino acids) is reported.
Collapse
Affiliation(s)
- Vinod G. Landge
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| | - Ayisha Parveen
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| | | | - Ekambaram Balaraman
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| |
Collapse
|
38
|
Shi Y, Li MS, Zhang F, Chen B. Nickel(ii)-catalyzed tandem C(sp2)–H bond activation and annulation of arenes with gem-dibromoalkenes. RSC Adv 2018; 8:28668-28675. [PMID: 35558433 PMCID: PMC9092601 DOI: 10.1039/c8ra03278e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
A nickel(ii)/silver(i)-catalyzed tandem C(sp2)–H activation and intramolecular annulation of arenes with dibromoalkenes has been successfully achieved, which offers an efficient approach to the 3-methyleneisoindolin-1-one scaffold. Attractive features of this system include its low cost, ease of operation, and its ability to access a wide range of isoindolinones. A nickel(ii)/silver(i)-catalyzed tandem C(sp2)–H activation and intramolecular annulation of arenes with dibromoalkenes has been successfully achieved, which offers an efficient approach to the 3-methyleneisoindolin-1-one scaffold.![]()
Collapse
Affiliation(s)
- Yun Shi
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou 730000
- P. R. China
| | - Meng-Sheng Li
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou 730000
- P. R. China
| | - Fangdong Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou 730000
- P. R. China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou 730000
- P. R. China
| |
Collapse
|
39
|
Planas O, Chirila PG, Whiteoak CJ, Ribas X. Current Mechanistic Understanding of Cobalt-Catalyzed C–H Functionalization. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Wu Y, Chen Z, Yang Y, Zhu W, Zhou B. Rh(III)-Catalyzed Redox-Neutral Unsymmetrical C–H Alkylation and Amidation Reactions of N-Phenoxyacetamides. J Am Chem Soc 2017; 140:42-45. [DOI: 10.1021/jacs.7b10349] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yunxiang Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yaxi Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Bing Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Kommagalla Y, Chatani N. Cobalt(II)-catalyzed C H functionalization using an N,N′-bidentate directing group. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Manoharan R, Jeganmohan M. Cobalt-Catalyzed Oxidative Cyclization of Benzamides with Maleimides: Synthesis of Isoindolone Spirosuccinimides. Org Lett 2017; 19:5884-5887. [DOI: 10.1021/acs.orglett.7b02873] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ramasamy Manoharan
- Department
of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Masilamani Jeganmohan
- Department
of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
43
|
Tan E, Konovalov AI, Fernández GA, Dorel R, Echavarren AM. Ruthenium-Catalyzed Peri- and Ortho-Alkynylation with Bromoalkynes via Insertion and Elimination. Org Lett 2017; 19:5561-5564. [PMID: 28976200 PMCID: PMC5679662 DOI: 10.1021/acs.orglett.7b02655] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkynylation of naphthols takes place with total regiocontrol at the peri position of the hydroxyl group in the presence of [RuCl2(p-cymene)]2 as the catalyst. This reaction features high functional group tolerance. The related ortho-alkynylation of benzoic acids proceeds under similar conditions and also shows wide functional group tolerance. Both reactions proceed through metalation, insertion of the alkyne, and bromide elimination.
Collapse
Affiliation(s)
- Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Andrey I Konovalov
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Gabriela A Fernández
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruth Dorel
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
44
|
Chen C, Zeng X. Ruthenium-Catalyzed Alkynylation of Benzoic Acids Mediated by a Weakly Coordination-Directing Auxiliary. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Changpeng Chen
- Center for Organic Chemistry; Frontier Institute of Science and Technology; Xi'an Jiaotong University; 710054 Xi'an China
| | - Xiaoming Zeng
- Center for Organic Chemistry; Frontier Institute of Science and Technology; Xi'an Jiaotong University; 710054 Xi'an China
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; 610064 Chengdu China
| |
Collapse
|
45
|
Huang H, Nakanowatari S, Ackermann L. Selectivity Control in Ruthenium(II)-Catalyzed C–H/N–O Activation with Alkynyl Bromides. Org Lett 2017; 19:4620-4623. [DOI: 10.1021/acs.orglett.7b02247] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Huawen Huang
- Institut für Organische
und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Sachiyo Nakanowatari
- Institut für Organische
und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Pototschnig G, Maulide N, Schnürch M. Direct Functionalization of C-H Bonds by Iron, Nickel, and Cobalt Catalysis. Chemistry 2017; 23:9206-9232. [PMID: 28590552 DOI: 10.1002/chem.201605657] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/08/2017] [Indexed: 11/06/2022]
Abstract
Non-precious-metal-catalyzed reactions are of increasing importance in chemistry due to the outstanding ecological and economic properties of these metals. In the subfield of metal-catalyzed direct C-H functionalization reactions, recent years have shown an increasing number of publications dedicated to this topic. Nickel, cobalt, and last but not least iron, have started to enter a field which was long dominated by precious metals such as palladium, rhodium, ruthenium, and iridium. The present review article summarizes the development of iron-, nickel-, and cobalt-catalyzed C-H functionalization reactions until the end of 2016, and discusses the scope and limitations of these transformations.
Collapse
Affiliation(s)
- Gerit Pototschnig
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California, 91125, USA
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währingerstrasse 38, 1090, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| |
Collapse
|
47
|
Zhu X, Shen XJ, Tian ZY, Lu S, Tian LL, Liu WB, Song B, Hao XQ. Rhodium-Catalyzed Direct Bis-cyanation of Arylimidazo[1,2-α]pyridine via Double C-H Activation. J Org Chem 2017; 82:6022-6031. [PMID: 28581299 DOI: 10.1021/acs.joc.6b03036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient Cp*Rh(III)-catalyzed selective bis-cyanation of arylimidazo[1,2-α]pyridines with N-cyano-N-phenyl-p-methylbenzenesulfonamide via N-directed ortho double C-H activation has been developed. The reaction proceeds with broad functional group tolerance to furnish various cyanated imidazopyridines in high yields. The current methodology exhibits unique characteristics, including high bis-cyanation selectivity, operational convenience, and gram-scale production.
Collapse
Affiliation(s)
- Xinju Zhu
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Jing Shen
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Zi-Yao Tian
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Shuai Lu
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lu-Lu Tian
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wen-Bo Liu
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Bing Song
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University , No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
48
|
Yoshino T, Matsunaga S. (Pentamethylcyclopentadienyl)cobalt(III)-Catalyzed C-H Bond Functionalization: From Discovery to Unique Reactivity and Selectivity. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700042] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo 060-0812 Japan
| |
Collapse
|
49
|
Park J, Lee J, Buckley C, Chang S. Iterative C-H Functionalization Leading to Multiple Amidations of Anilides. Angew Chem Int Ed Engl 2017; 56:4256-4260. [PMID: 28294489 DOI: 10.1002/anie.201701138] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 11/09/2022]
Abstract
Polyaminobenzenes were synthesized by the ruthenium-catalyzed iterative C-H amidation of anilides using dioxazolones as an amino source. This strategy could be implemented by the sequential activation of C-H bonds of formerly generated compounds by cascade chelation assistance of newly installed amide groups. Computational studies provided a rationale.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jia Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | | | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
50
|
Park J, Lee J, Chang S. Iterative C−H Functionalization Leading to Multiple Amidations of Anilides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juhyeon Park
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Republic of Korea
| | - Jia Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 34141 Republic of Korea
| |
Collapse
|