1
|
Lan L, Xu K, Zeng C. The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement. Chem Sci 2024; 15:13459-13465. [PMID: 39183920 PMCID: PMC11339951 DOI: 10.1039/d4sc02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
The reductive activation of chemical bonds at less negative potentials provides a foundation for high functional group tolerance and selectivity, and it is one of the central topics in organic electrosynthesis. Along this line, we report the design of a dual-activation mode by merging electro-reduction with hydrogen bonding activation. As a proof of principle, the reduction potential of N-phenylpropiolamide was shifted positively by 218 mV. Enabled by this strategy, the radical Smiles rearrangement of N-arylpropiolamides without external radical precursors and prefunctionalization steps was accomplished. [DBU][HOAc], a readily accessible ionic liquid, was exploited for the first time both as a hydrogen bonding donor and as a supporting electrolyte.
Collapse
Affiliation(s)
- Liyuan Lan
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
2
|
Qin J, Barday M, Jana S, Sanosa N, Funes-Ardoiz I, Teskey CJ. Photoinduced Cobalt Catalysis for the Reductive Coupling of Pyridines and Dienes Enabled by Paired Single-Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202310639. [PMID: 37676106 DOI: 10.1002/anie.202310639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Selective hydroarylation of dienes has potential to provide swift access to useful building blocks. However, most existing methods rely on dienes stabilised by an aromatic group and transmetallation or nucleophilic attack steps require electron-rich aryl coupling partners. As such, there are few examples which tolerate wide-spread heteroarenes such as pyridine. Whilst allylic C-H functionalisation could be considered an alternative approach, the positional selectivity of unsymmetrical substrates is hard to control. Here, we report a general approach for selective hydropyridylation of dienes under mild conditions using metal catalysed hydrogen-atom transfer. Photoinduced, reductive conditions enable simultaneous formation of a cobalt-hydride catalyst and the persistent radical of easily-synthesised pyridyl phosphonium salts. This facilitates selective coupling of dienes in a traceless manner at the C4-position of a wide-range of pyridine substrates. The mildness of the method is underscored by its functional-group tolerance and demonstrated by applications in late-stage functionalisation. Based on a combination of experimental and computational studies, we propose a mechanistic pathway which proceeds through non-reversible hydrogen-atom transfer (HAT) from a cobalt hydride species which is uniquely selective for dienes in the presence of other olefins due to a much higher relative barrier associated with olefin HAT.
Collapse
Affiliation(s)
- Jingyang Qin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Manuel Barday
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Samikshan Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Nil Sanosa
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Li Y, Fu S, Liu B. Asymmetric syntheses of ent-pimarane diterpenoids. Org Biomol Chem 2023; 21:4409-4413. [PMID: 37194415 DOI: 10.1039/d3ob00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aromatic ent-pimaranes are a group of aromatized tricyclic diterpenoids that exhibit diverse bioactivities. In this work, the first total syntheses of two aromatic ent-pimaranes were achieved via a C-ABC construction sequence enabled by chiral auxiliary controlled asymmetric radical polyene cyclization, and the subsequent substrate-controlled stereo-/regio-specific hydroboration of alkene allowed for access to both natural products with C19 oxidation modifications.
Collapse
Affiliation(s)
- Yunzhou Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Liu Y, Ding S, Xu M, Xu J, Cheng D, Wang H, Xu X. Synthesis of arylacylated oxindoles via visible light‐promoted Smiles rearrangement. ChemistrySelect 2022. [DOI: 10.1002/slct.202202563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yihuo Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Siyu Ding
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mingli Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jinli Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Dongping Cheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hong Wang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaoliang Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
5
|
Li X, Shui Y, Shen P, Wang YP, Zhang C, Feng C. A novel type of radical-addition-induced β-fragmentation and ensuing remote functionalization. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Xin Z, Wang H, He H, Zhao X, Gao S. Asymmetric Total Synthesis of Norzoanthamine. Angew Chem Int Ed Engl 2021; 60:12807-12812. [PMID: 33822444 DOI: 10.1002/anie.202102643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/26/2021] [Indexed: 11/08/2022]
Abstract
We report herein the asymmetric total synthesis of norzoanthamine using radical reactions as key steps for rapid access to the congested carbocyclic core, which is the major synthetic challenge for most zoanthamine alkaloids. (1) The Ueno-Stork radical cyclization was applied to construct the adjacent quaternary centers at the C-9 and C-22 positions; (2) a Co-catalyzed HAT radical reaction was successfully applied to construct the quaternary center at C-12 via Csp3 -Csp2 bond formation; (3) a Mn-catalyzed HAT radical reaction was used to stereospecifically reduce the tetra-substituted olefin (C13=C18) and install the contiguous stereocenters in proximity to the quaternary center. A one-pot bio-inspired cyclization step was finally applied to forge the unstable bis-amino acetal skeleton. Our approach can precisely control the stereochemistry of seven vicinal stereocenters and effectively construct the highly congested heptacyclic skeleton.
Collapse
Affiliation(s)
- Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
8
|
Xin Z, Wang H, He H, Zhao X, Gao S. Asymmetric Total Synthesis of Norzoanthamine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
9
|
Abrams R, Jesani MH, Browning A, Clayden J. Triarylmethanes and their Medium-Ring Analogues by Unactivated Truce-Smiles Rearrangement of Benzanilides. Angew Chem Int Ed Engl 2021; 60:11272-11277. [PMID: 33830592 PMCID: PMC8252078 DOI: 10.1002/anie.202102192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Intramolecular nucleophilic aromatic substitution (Truce–Smiles rearrangement) of the anions of 2‐benzyl benzanilides leads to triarylmethanes in an operationally simple manner. The reaction succeeds even without electronic activation of the ring that plays the role of electrophile in the SNAr reaction, being accelerated instead by the preferred conformation imposed by the tertiary amide tether. The amide substituent of the product may be removed or transformed into alternative functional groups. A ring‐expanding variant (n to n+4) of the reaction provided a route to doubly benzo‐fused medium ring lactams of 10 or 11 members. Hammett analysis returned a ρ value consistent with the operation of a partially concerted reaction mechanism.
Collapse
Affiliation(s)
- Roman Abrams
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Alex Browning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
10
|
Abrams R, Jesani MH, Browning A, Clayden J. Triarylmethanes and their Medium‐Ring Analogues by Unactivated Truce–Smiles Rearrangement of Benzanilides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Mehul H. Jesani
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Alex Browning
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
11
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021; 60:5512-5518. [PMID: 33206427 DOI: 10.1002/anie.202013881] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/11/2022]
Abstract
We describe herein the assembly of the cis-decalin framework through radical cyclization initiated by metal-catalyzed hydrogen atom transfer (MHAT), further applied it in the asymmetric synthesis of dankasterones A and B and periconiastone A. Position-selective C-H oxygenation allowed for installation of the necessary functionality. A radical rearrangement was adopted to create 13(14→8)abeo-8-ergostane skeleton. Interconversion of dankasterone B and periconiastone A was realized through biomimetic intramolecular aldol and retro-aldol reactions. The MHAT-based approach, serves as a new dissection means, is complementary to the conventional ways to establish cis-decalin framework.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| |
Collapse
|
12
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| |
Collapse
|
13
|
Senapati BK. Recent progress in the synthesis of the furanosteroid family of natural products. Org Chem Front 2021. [DOI: 10.1039/d0qo01454k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on an overview of recent advances in the synthesis of furanosteroids and illustrates their applications in medicinal chemistry over the period of 2005–present.
Collapse
|
14
|
Sieber JD, Agrawal T. Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
Collapse
|
15
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020; 59:11600-11606. [DOI: 10.1002/anie.202003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
16
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
17
|
Matsumoto Y, Sawamura J, Murata Y, Nishikata T, Yazaki R, Ohshima T. Amino Acid Schiff Base Bearing Benzophenone Imine As a Platform for Highly Congested Unnatural α-Amino Acid Synthesis. J Am Chem Soc 2020; 142:8498-8505. [PMID: 32316721 DOI: 10.1021/jacs.0c02707] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unnatural α-amino acids are invaluable building blocks in synthetic organic chemistry and could upgrade the function of peptides. We developed a new mode for catalytic activation of amino acid Schiff bases, serving as a platform for highly congested unnatural α-amino acid synthesis. The redox active copper catalyst enabled efficient cross-coupling to construct contiguous tetrasubstituted carbon centers. The broad functional group compatibility highlights the mildness of the present catalysis. Notably, we achieved successive β-functionalization and oxidation of amino acid Schiff bases to afford dehydroalanine derivatives bearing tetrasubstituted carbon. A three-component cross-coupling reaction of an amino acid Schiff base, alkyl bromides, and styrene derivatives demonstrated the high utility of the present method. The diastereoselective reaction was also achieved using menthol derivatives as a chiral auxiliary, delivering enantiomerically enriched α-amino acid bearing α,β-continuous tetrasubstituted carbon. The synthesized highly congested unnatural α-amino acid could be derivatized and incorporated into peptide synthesis.
Collapse
Affiliation(s)
- Yohei Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Sawamura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yumi Murata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Vrubliauskas D, Vanderwal CD. Cobalt-Catalyzed Hydrogen-Atom Transfer Induces Bicyclizations that Tolerate Electron-Rich and Electron-Deficient Intermediate Alkenes. Angew Chem Int Ed Engl 2020; 59:6115-6121. [PMID: 31991035 PMCID: PMC7124983 DOI: 10.1002/anie.202000252] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/12/2022]
Abstract
A novel CoII -catalyzed polyene cyclization was developed that is uniquely effective when performed in hexafluoroisopropanol as the solvent. The process is presumably initiated by metal-catalyzed hydrogen-atom transfer (MHAT) to 1,1-disubstituted or monosubstituted alkenes, and the reaction is remarkable for its tolerance of internal alkenes bearing either electron-rich methyl or electron-deficient nitrile substituents. Electron-rich aromatic terminators are required in both cases. Terpenoid scaffolds with different substitution patterns are obtained with excellent diastereoselectivities, and the bioactive C20-oxidized abietane diterpenoid carnosaldehyde was made to showcase the utility of the nitrile-bearing products. Also provided are the results of several mechanistic experiments that suggest the process features an MHAT-induced radical bicyclization with late-stage oxidation to regenerate the aromatic terminator.
Collapse
Affiliation(s)
- Darius Vrubliauskas
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | | |
Collapse
|
19
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
20
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020; 59:8195-8202. [DOI: 10.1002/anie.201915837] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
21
|
Vrubliauskas D, Vanderwal CD. Cobalt‐Catalyzed Hydrogen‐Atom Transfer Induces Bicyclizations that Tolerate Electron‐Rich and Electron‐Deficient Intermediate Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Jao TJ, Akula PS, Hong BC, Lee GH. Catalytic 1,2-Rearrangements: Organocatalyzed Michael/Semi-Pinacol-like Rearrangement Cascade of 1,3-Diones and Nitroolefins. Org Lett 2020; 22:62-67. [PMID: 31829018 DOI: 10.1021/acs.orglett.9b03912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
New types of organocatalytic 1,2-rearrangements, which resemble the Smiles-like or semi-pinacol-like rearrangement, of Michael adducts of 1,3-dicarbonyl-2-alkyl compounds and nitroalkenes have been realized. Unlike the well-known conjugate addition, the reaction affords the 1-phenyl-1-nitroalkanes via unprecedented rearrangement and cascade reactions. Structures of the appropriate products were unambiguously characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Tsung-Jung Jao
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Pavan Sudheer Akula
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei 106 , Taiwan, R.O.C
| |
Collapse
|
23
|
Whalley DM, Duong HA, Greaney MF. A visible light-mediated, decarboxylative, desulfonylative Smiles rearrangement for general arylethylamine syntheses. Chem Commun (Camb) 2020; 56:11493-11496. [DOI: 10.1039/d0cc05049k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A decarboxylative, desulfonylative Smiles rearrangement is reported for the synthesis of a wide range of biologically relevant arylethylamines, including fluorinated phenylethylamines, heterocyclic amphetamines and an unnatural amino acid.
Collapse
Affiliation(s)
- David M. Whalley
- Institute of Chemical and Engineering Sciences (ICES) Agency for Science, Technology and Research (A*STAR)
- Singapore
- School of Chemistry
- The University of Manchester
- Manchester M13 9PL
| | - Hung A. Duong
- Institute of Chemical and Engineering Sciences (ICES) Agency for Science, Technology and Research (A*STAR)
- Singapore
| | | |
Collapse
|
24
|
Johnson S, Kovács E, Greaney MF. Arylation and alkenylation of activated alkyl halides using sulfonamides. Chem Commun (Camb) 2020; 56:3222-3224. [DOI: 10.1039/d0cc00220h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A variety of quaternary aryl amino acid derivatives can be synthesised using tandem SN2/Smiles rearrangement chemistry involving aryl sulfonamides and α-chloro carbonyl compounds.
Collapse
Affiliation(s)
- Stuart Johnson
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - Ervin Kovács
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | | |
Collapse
|
25
|
Wu B, Zhu R. Radical Philicity Inversion in Co- and Fe-Catalyzed Hydrogen-Atom-Transfer-Initiated Cyclizations of Unsaturated Acylsilanes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04774] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Arai S, Sato Y, Ito N, Nishida A. Cobalt-catalyzed hydrocyanation and hydroarylation of enamines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Barlow HL, Rabet PTG, Durie A, Evans T, Greaney MF. Arylation Using Sulfonamides: Phenylacetamide Synthesis through Tandem Acylation–Smiles Rearrangement. Org Lett 2019; 21:9033-9035. [PMID: 31674791 DOI: 10.1021/acs.orglett.9b03429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Helen L. Barlow
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pauline T. G. Rabet
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alastair Durie
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Tim Evans
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael F. Greaney
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
28
|
Discolo CA, Touney EE, Pronin SV. Catalytic Asymmetric Radical–Polar Crossover Hydroalkoxylation. J Am Chem Soc 2019; 141:17527-17532. [DOI: 10.1021/jacs.9b10645] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher A. Discolo
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Eric E. Touney
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V. Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
29
|
Affiliation(s)
- Yang Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
30
|
Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. Hydroalkylation of Olefins To Form Quaternary Carbons. J Am Chem Soc 2019; 141:7709-7714. [DOI: 10.1021/jacs.9b02844] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samantha A. Green
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tucker R. Huffman
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ruairí O. McCourt
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vincent van der Puyl
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Zhang M, Yang L, Tian C, Zhou M, An G, Li G. A hydrate salt-promoted reductive coupling reaction of nitrodienes with unactivated alkenes. Org Biomol Chem 2019; 17:2258-2264. [PMID: 30724308 DOI: 10.1039/c9ob00136k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metal-catalyzed reductive coupling has emerged as a powerful method for the construction of C-C bonds. Herein, a crystalline hydrate, Na2HPO4·7H2O, has been disclosed as an effective promoter for the reductive coupling of nitrodienes with unactivated alkenes to afford diverse dienes with various functionalities in an open-flask manner. The mechanism study has revealed that Na2HPO4·7H2O accelerates the in situ generation of active silane PhSi(OEt)H2 and prevents the deactivation of catalyst. The approach can increase the efficiency of previous reductive coupling reactions as well.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Alkene Carboarylation through Catalyst‐Free, Visible Light‐Mediated Smiles Rearrangement. Chemistry 2019; 25:1927-1930. [DOI: 10.1002/chem.201805712] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Indexed: 11/07/2022]
|
33
|
Touney EE, Foy NJ, Pronin SV. Catalytic Radical–Polar Crossover Reactions of Allylic Alcohols. J Am Chem Soc 2018; 140:16982-16987. [DOI: 10.1021/jacs.8b12075] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Eric E. Touney
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Nicholas J. Foy
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V. Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
34
|
Green SA, Crossley SWM, Matos JLM, Vásquez-Céspedes S, Shevick SL, Shenvi RA. The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. Acc Chem Res 2018; 51:2628-2640. [PMID: 30406655 DOI: 10.1021/acs.accounts.8b00337] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.
Collapse
Affiliation(s)
- Samantha A. Green
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven W. M. Crossley
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeishla L. M. Matos
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Suhelen Vásquez-Céspedes
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sophia L. Shevick
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Saladrigas M, Loren G, Bonjoch J, Bradshaw B. Hydrogen Atom Transfer (HAT)-Triggered Iron-Catalyzed Intra- and Intermolecular Coupling of Alkenes with Hydrazones: Access to Complex Amines. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mar Saladrigas
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Guillem Loren
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Shevick SL, Obradors C, Shenvi RA. Mechanistic Interrogation of Co/Ni-Dual Catalyzed Hydroarylation. J Am Chem Soc 2018; 140:12056-12068. [PMID: 30153002 PMCID: PMC6329606 DOI: 10.1021/jacs.8b06458] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cobalt/nickel-dual catalyzed hydroarylation of terminal olefins with iodoarenes builds complexity from readily available starting materials, with a high preference for the Markovnikov (branched) product. Here, we advance a mechanistic model of this reaction through the use of reaction progress kinetic analysis (RPKA), radical clock experiments, and stoichiometric studies. Through exclusion of competing hypotheses, we conclude that the reaction proceeds through an unprecedented alkylcobalt to nickel direct transmetalation. Demonstration of catalytic alkene prefunctionalization, via spectroscopic observation of an organocobalt species, distinguishes this Csp2-Csp3 cross-coupling method from a conventional transmetalation process, which employs a stoichiometric organometallic nucleophile, and from a bimetallic oxidative addition of an organohalide across nickel, described by radical scission and subsequent alkyl radical capture at a second nickel center. A refined understanding of the reaction leads to an optimized hydroarylation procedure that excludes exogenous oxidant, demonstrating that the transmetalation is net redox neutral. Catalytic alkene prefunctionalization by cobalt and engagement with nickel catalytic cycles through direct transmetalation provides a new platform to merge these two rich areas of chemistry in preparatively useful ways.
Collapse
Affiliation(s)
- Sophia L Shevick
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Carla Obradors
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ryan A Shenvi
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
37
|
Ma X, Herzon SB. Cobalt bis(acetylacetonate)- tert-butyl hydroperoxide-triethylsilane: a general reagent combination for the Markovnikov-selective hydrofunctionalization of alkenes by hydrogen atom transfer. Beilstein J Org Chem 2018; 14:2259-2265. [PMID: 30202480 PMCID: PMC6122341 DOI: 10.3762/bjoc.14.201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 01/20/2023] Open
Abstract
We show that cobalt bis(acetylacetonate) [Co(acac)2], tert-butyl hydroperoxide (TBHP), and triethylsilane (Et3SiH) constitute an inexpensive, general, and practical reagent combination to initiate a broad range of Markovnikov-selective alkene hydrofunctionalization reactions. These transformations are believed to proceed by cobalt-mediated hydrogen atom transfer (HAT) to the alkene substrate, followed by interception of the resulting alkyl radical intermediate with a SOMOphile. In addition, we report the first reductive couplings of unactivated alkenes and aryldiazonium salts by an HAT pathway. The simplicity and generality of the Co(acac)2–TBHP–Et3SiH reagent combination suggests it as a useful starting point to develop HAT reactions in complex settings.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
38
|
Remote C-H functionalization using radical translocating arylating groups. Nat Commun 2018; 9:2808. [PMID: 30022072 PMCID: PMC6051993 DOI: 10.1038/s41467-018-05193-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/20/2018] [Indexed: 11/12/2022] Open
Abstract
Site selective chemical functionalization at unactivated C(sp3)−H bonds is highly challenging and recent successful studies mostly focus on the use of transition metal catalysis in combination with directing groups. Radical chemistry offers a complementary approach with the Barton and the Hofmann-Löffler-Freytag reactions being landmark contributions in the area of remote C−H functionalization at unactivated aliphatic sites. Herein we introduce the concept of radical translocation arylation at unactivated secondary and tertiary C(sp3)−H bonds in various alcohols. The straightforward two-step sequence comprises an ionic alcohol sulfonylation with especially designed ortho-iodoaryl sulfonyl chlorides followed by a radical cascade reaction including aryl radical generation, remote radical translocation, aryl migration, reduction, and SO2 extrusion to give the corresponding γ-arylated alcohols. Moderate to good yields are obtained, remote C−H arylation occurs with excellent regioselectivity and for secondary C(sp3)−H bonds good to excellent stereoselectivity is achieved. Selective remote functionalization of aliphatic C(sp3)−H bonds is highly challenging and often requires transition metals and/or directing groups. Here, the authors show the γ-arylation of aliphatic alcohols via a two-step radical translocation and subsequent radical aryl migration.
Collapse
|
39
|
Yang L, Ji WW, Lin E, Li JL, Fan WX, Li Q, Wang H. Synthesis of Alkylated Monofluoroalkenes via Fe-Catalyzed Defluorinative Cross-Coupling of Donor Alkenes with gem-Difluoroalkenes. Org Lett 2018; 20:1924-1927. [DOI: 10.1021/acs.orglett.8b00471] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Wei Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - E Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Lin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Xin Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
40
|
Qi J, Zheng J, Cui S. Facile synthesis of carbo- and heterocycles via Fe(iii)-catalyzed alkene hydrofunctionalization. Org Chem Front 2018. [DOI: 10.1039/c7qo00817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of carbo- and heterocycles via Fe(iii)-catalyzed alkene hydrofunctionalization has been developed.
Collapse
Affiliation(s)
- Jifeng Qi
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| | - Jing Zheng
- School of Resources Environmental & Chemical Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Sunliang Cui
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| |
Collapse
|
41
|
Saladrigas M, Bosch C, Saborit GV, Bonjoch J, Bradshaw B. Radical Cyclization of Alkene-Tethered Ketones Initiated by Hydrogen-Atom Transfer. Angew Chem Int Ed Engl 2017; 57:182-186. [DOI: 10.1002/anie.201709659] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Mar Saladrigas
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Caroline Bosch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Gisela V. Saborit
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| |
Collapse
|
42
|
Saladrigas M, Bosch C, Saborit GV, Bonjoch J, Bradshaw B. Radical Cyclization of Alkene-Tethered Ketones Initiated by Hydrogen-Atom Transfer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mar Saladrigas
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Caroline Bosch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Gisela V. Saborit
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB; Universitat de Barcelona; Av. Joan XXIII s/n 08028- Barcelona Spain
| |
Collapse
|
43
|
Holden CM, Greaney MF. Modern Aspects of the Smiles Rearrangement. Chemistry 2017; 23:8992-9008. [DOI: 10.1002/chem.201700353] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/07/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Catherine M. Holden
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Michael F. Greaney
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
44
|
Zweig JE, Kim DE, Newhouse TR. Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. Chem Rev 2017; 117:11680-11752. [PMID: 28525261 DOI: 10.1021/acs.chemrev.6b00833] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
First-row transition-metal-mediated reactions constitute an important and growing area of research due to the low cost, low toxicity, and exceptional synthetic versatility of these metals. Currently, there is considerable effort to replace existing precious-metal-catalyzed reactions with first-row analogs. More importantly, there are a plethora of unique transformations mediated by first-row metals, which have no classical second- or third-row counterpart. Herein, the application of first-row metal-mediated methods to the total synthesis of natural products is discussed. This Review is intended to highlight strategic uses of these metals to realize efficient syntheses and highlight the future potential of these reagents and catalysts in organic synthesis.
Collapse
Affiliation(s)
- Joshua E Zweig
- Department of Chemistry, Yale University , 275 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Daria E Kim
- Department of Chemistry, Yale University , 275 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University , 275 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
45
|
Ma X, Dang H, Rose JA, Rablen P, Herzon SB. Hydroheteroarylation of Unactivated Alkenes Using N-Methoxyheteroarenium Salts. J Am Chem Soc 2017; 139:5998-6007. [DOI: 10.1021/jacs.7b02388] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoshen Ma
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hester Dang
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - John A. Rose
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Paul Rablen
- Department
of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Seth B. Herzon
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
46
|
Shen Y, Huang B, Zheng J, Lin C, Liu Y, Cui S. Csp-Csp 3 Bond Formation via Iron(III)-Promoted Hydroalkynylation of Unactivated Alkenes. Org Lett 2017; 19:1744-1747. [PMID: 28353346 DOI: 10.1021/acs.orglett.7b00499] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An iron(III)-promoted hydroalkynylation of unactivated alkenes toward Csp-Csp3 bond formation has been developed. Various alkenes, including mono-, di-, and trisubstituted alkenes, could all smoothly convert to structural diversified alkynes in this chemoselective protocol. Additionally, the scalability was unraveled and the further divergent transformations of products were conducted to demonstrate the synthetic utility.
Collapse
Affiliation(s)
- Yangyong Shen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Bo Huang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jing Zheng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Chen Lin
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058, Zhejiang, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
47
|
Rabet PTG, Boyd S, Greaney MF. Metal-Free Intermolecular Aminoarylation of Alkynes. Angew Chem Int Ed Engl 2017; 56:4183-4186. [DOI: 10.1002/anie.201612445] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Pauline T. G. Rabet
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Scott Boyd
- Department of Oncology, AstraZeneca, Darwin Building; Cambridge Science Park; Milton Road Cambridge CB4 0WG UK
| | - Michael F. Greaney
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
48
|
Rabet PTG, Boyd S, Greaney MF. Metal-Free Intermolecular Aminoarylation of Alkynes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Pauline T. G. Rabet
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Scott Boyd
- Department of Oncology, AstraZeneca, Darwin Building; Cambridge Science Park; Milton Road Cambridge CB4 0WG UK
| | - Michael F. Greaney
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
49
|
|
50
|
Yan M, Lo JC, Edwards JT, Baran PS. Radicals: Reactive Intermediates with Translational Potential. J Am Chem Soc 2016; 138:12692-12714. [PMID: 27631602 PMCID: PMC5054485 DOI: 10.1021/jacs.6b08856] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 02/08/2023]
Abstract
This Perspective illustrates the defining characteristics of free radical chemistry, beginning with its rich and storied history. Studies from our laboratory are discussed along with recent developments emanating from others in this burgeoning area. The practicality and chemoselectivity of radical reactions enable rapid access to molecules of relevance to drug discovery, agrochemistry, material science, and other disciplines. Thus, these reactive intermediates possess inherent translational potential, as they can be widely used to expedite scientific endeavors for the betterment of humankind.
Collapse
Affiliation(s)
- Ming Yan
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julian C. Lo
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacob T. Edwards
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|