1
|
Moriyama T, Yoritate M, Kato N, Saika A, Kusuhara W, Ono S, Nagatake T, Koshino H, Kiya N, Moritsuka N, Tanabe R, Hidaka Y, Usui K, Chiba S, Kudo N, Nakahashi R, Igawa K, Matoba H, Tomooka K, Ishikawa E, Takahashi S, Kunisawa J, Yamasaki S, Hirai G. Linkage-Editing Pseudo-Glycans: A Reductive α-Fluorovinyl- C-Glycosylation Strategy to Create Glycan Analogs with Altered Biological Activities. J Am Chem Soc 2024; 146:2237-2247. [PMID: 38196121 DOI: 10.1021/jacs.3c12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.
Collapse
Affiliation(s)
- Takahiro Moriyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Kato
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Azusa Saika
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Wakana Kusuhara
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ono
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro Nagatake
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Noriaki Kiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Natsuho Moritsuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riko Tanabe
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yu Hidaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suzuka Chiba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noyuri Kudo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Rintaro Nakahashi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Eri Ishikawa
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Kunisawa
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Pseudo-glycoconjugates with a C-glycoside linkage. Adv Carbohydr Chem Biochem 2022; 82:35-77. [PMID: 36470649 DOI: 10.1016/bs.accb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Work by the author and colleagues has been focused on the development of pseudo-glycans (pseudo-glycoconjugates), in which the O-glycosidic linkage of the natural-type glycan structure is replaced by a C-glycosidic linkage. These analogs are not degraded by cellular glycoside hydrolases and are thus expected to be useful molecular tools that may maintain the original biological activity for a long period in the cell. However, their biological potential is not yet well understood because only a few pseudo glycans have so far been synthesized. This article aims to provide a bird's-eye view of our recent studies on the creation of C-glycoside analogs of ganglioside GM3 based on the CHF-sialoside linkage, and summarizes the chemical insights acquired during our stereoselective synthesis of the C-sialoside bond, ultimately leading to pseudo-GM3. Conformational analysis of the synthesized CHF-sialoside disaccharides confirmed that the anticipated conformational control by F-atom introduction was successful, and furthermore, enhanced the biological activity. In order to improve access to C-glycoside analogs based on pseudo-GM3, it is still important to streamline the synthesis process. With this in mind, we designed and developed a direct C-glycosylation method using atom-transfer radical coupling, and employed it in syntheses of pseudo-isomaltose and pseudo-KRN7000.
Collapse
|
3
|
Truong S, Mootoo DR. C-Glycosylcrotylboronates for the Synthesis of Glycomimetics. Org Lett 2021; 24:191-195. [PMID: 34958591 DOI: 10.1021/acs.orglett.1c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stereoselective synthesis of E- and Z- isomers of a C- mannosyl crotylpinacolboronate via Ni-promoted reactions on an allylic acetate and a diene precursor, respectively, is described. The E- and Z- isomers reacted with 1,2-O-isopropylidene glyceraldehyde in the presence or absence of (R)- and (S)- TRIP catalysts, to give predominantly 3,4-anti and 3,4-syn crotylation products, respectively, with moderate to high facial selectivity. These products were transformed to biologically relevant C-manno-disaccharides.
Collapse
Affiliation(s)
- Steven Truong
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States.,The Graduate Center, CUNY, 365 Fifth Avenue, New York, New York 10016, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States.,The Graduate Center, CUNY, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
4
|
Wang XF, Zhang MJ, He N, Wang YC, Yan C, Chen XZ, Gao XF, Guo J, Luo R, Liu Z. Potent Neutralizing Antibodies Elicited by RBD-Fc-Based COVID-19 Vaccine Candidate Adjuvanted by the Th2-Skewing iNKT Cell Agonist. J Med Chem 2021; 64:11554-11569. [PMID: 34279930 PMCID: PMC8315257 DOI: 10.1021/acs.jmedchem.1c00881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/15/2023]
Abstract
The development of a safe and effective COVID-19 vaccine is of paramount importance to terminate the current pandemic. An adjuvant is crucial for improving the efficacy of the subunit COVID19 vaccine. α-Galactosylceramide (αGC) is a classical iNKT cell agonist which causes the rapid production of Th1- and Th2-associated cytokines; we, therefore, expect that the Th1- or Th2-skewing analogues of αGC can better enhance the immunogenicity of the receptor-binding domain in the spike protein of SARS-CoV-2 fused with the Fc region of human IgG (RBD-Fc). Herein, we developed a universal synthetic route to the Th1-biasing (α-C-GC) and Th2-biasing (OCH and C20:2) analogues. Immunization of mice demonstrated that αGC-adjuvanted RBD-Fc elicited a more potent humoral response than that observed with Alum and enabled the sparing of antigens. Remarkably, at a low dose of the RBD-Fc protein (2 μg), the Th2-biasing agonist C20:2 induced a significantly higher titer of the neutralizing antibody than that of Alum.
Collapse
Affiliation(s)
- Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center for Intelligent
Biosensing Technology and Health, College of Chemistry, Central China Normal
University, Wuhan, Hubei 430079, P. R. China
| | - Meng-Jia Zhang
- State Key Laboratory of Agricultural Microbiology,
College of Veterinary Medicine, Huazhong Agricultural
University, Wuhan, Hubei 430070, P. R. China
| | - Na He
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center for Intelligent
Biosensing Technology and Health, College of Chemistry, Central China Normal
University, Wuhan, Hubei 430079, P. R. China
| | - Ya-Cong Wang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center for Intelligent
Biosensing Technology and Health, College of Chemistry, Central China Normal
University, Wuhan, Hubei 430079, P. R. China
| | - Cheng Yan
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center for Intelligent
Biosensing Technology and Health, College of Chemistry, Central China Normal
University, Wuhan, Hubei 430079, P. R. China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and Treatment of
Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan
Medical University, Ganzhou, Jiangxi 341000,
China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology, Nanchang,
Jiangxi 330013, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center for Intelligent
Biosensing Technology and Health, College of Chemistry, Central China Normal
University, Wuhan, Hubei 430079, P. R. China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology,
College of Veterinary Medicine, Huazhong Agricultural
University, Wuhan, Hubei 430070, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, International Joint Research Center for Intelligent
Biosensing Technology and Health, College of Chemistry, Central China Normal
University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
5
|
Hirai G, Kato M, Koshino H, Nishizawa E, Oonuma K, Ota E, Watanabe T, Hashizume D, Tamura Y, Okada M, Miyagi T, Sodeoka M. Ganglioside GM3 Analogues Containing Monofluoromethylene-Linked Sialoside: Synthesis, Stereochemical Effects, Conformational Behavior, and Biological Activities. JACS AU 2021; 1:137-146. [PMID: 34467279 PMCID: PMC8395706 DOI: 10.1021/jacsau.0c00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Glycoconjugates are an important class of biomolecules that regulate numerous biological events in cells. However, these complex, medium-size molecules are metabolically unstable, which hampers detailed investigations of their functions as well as their potential application as pharmaceuticals. Here we report sialidase-resistant analogues of ganglioside GM3 containing a monofluoromethylene linkage instead of the native O-sialoside linkage. Stereoselective synthesis of CHF-linked disaccharides and kinetically controlled Au(I)-catalyzed glycosylation efficiently furnished both stereoisomers of CHF-linked as well as CF 2 - and CH 2 -linked GM3 analogues. Like native GM3, the C-linked GM3 analogues inhibited the autophosphorylation of epidermal growth factor (EGF) receptor induced by EGF in vitro. Assay of the proliferation-enhancing activity toward Had-1 cells together with NMR-based conformational analysis showed that the (S)-CHF-linked GM3 analogue with exo-gauche conformation is the most potent of the synthesized compounds. Our findings suggest that exo-anomeric conformation is important for the biological functions of GM3.
Collapse
Affiliation(s)
- Go Hirai
- Graduate
School of Pharmaceutical Sciences, Kyushu
University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Marie Kato
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroyuki Koshino
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eri Nishizawa
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kana Oonuma
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eisuke Ota
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toru Watanabe
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN
Center for Emergent Matter Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Tamura
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsuaki Okada
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taeko Miyagi
- Miyagi Cancer
Center Research Institute, Natori 981-1293, Japan
| | - Mikiko Sodeoka
- RIKEN
Cluster for Pioneering Resaerch, Synthetic Organic Chemistry Laboratory, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN
Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo
Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
6
|
Hidaka Y, Kiya N, Yoritate M, Usui K, Hirai G. Synthesis of CH2-linked α-galactosylceramide and its glucose analogues through glycosyl radical-mediated direct C-glycosylation. Chem Commun (Camb) 2020; 56:4712-4715. [DOI: 10.1039/d0cc00785d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Direct C-glycosylation of a conformationally constrained and stable C1-sp3 hybridized carbohydrate donor with a carefully designed sphingosine unit afforded the CH2-linked analogue of antitumor-active KRN7000 and its glucose congener.
Collapse
Affiliation(s)
- Yu Hidaka
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Noriaki Kiya
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| |
Collapse
|
7
|
Ban Y, Dong W, Zhang L, Zhou T, Altiti AS, Ali K, Mootoo DR, Blaho VA, Hla T, Ren Y, Ma X. Abrogation of Endogenous Glycolipid Antigen Presentation on Myelin-Laden Macrophages by D-Sphingosine Ameliorates the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2019; 10:404. [PMID: 30941120 PMCID: PMC6433838 DOI: 10.3389/fimmu.2019.00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/15/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Although myelin is composed of mostly lipids, the pathological role of myelin lipids in demyelinating diseases remains elusive. The principal lipid of the myelin sheath is β-galactosylceramide (β-Galcer). Its α-anomer (α-Galcer) has been demonstrated to be antigenically presented by macrophages via CD1d, a MHC class I-like molecule. Myelin, which is mostly composed of β-Galcer, has been long considered as an immunologically-inert neuron insulator, because the antigen-binding cleft of CD1d is highly α-form-restricted. Results: Here, we report that CD1d-mediated antigenic presentation of myelin-derived galactosylceramide (Mye-GalCer) by macrophages contributed significantly to the progression of experimental autoimmune encephalomyelitis (EAE). Surprisingly, this presentation was recognizable by α-Galcer:CD1d-specific antibody (clone L363), but incapable of triggering expansion of iNKT cells and production of iNKT signature cytokines (IFNγ and IL-4). Likewise, a synthesized analog of Mye-Galcer, fluorinated α-C-GalCer (AA2), while being efficiently presented via CD1d on macrophages, failed to stimulate production of IFNγ and IL-4. However, AA2 significantly exacerbated EAE progression. Further analyses revealed that the antigenic presentations of both Mye-GalCer and its analog (AA2) in α-form via CD1d promoted IL-17 production from T cells, leading to elevated levels of IL-17 in EAE spinal cords and sera. The IL-17 neutralizing antibody significantly reduced the severity of EAE symptoms in AA2-treated mice. Furthermore, D-sphingosine, a lipid possessing the same hydrophobic base as ceramide but without a carbohydrate residue, efficiently blocked this glycolipid antigen presentation both in vitro and in spinal cords of EAE mice, and significantly decreased IL-17 and ameliorated the pathological symptoms. Conclusion: Our findings reveal a novel pathway from the presentation of Mye-GalCer to IL-17 production, and highlight the promising therapeutic potential of D-sphingosine for the human disorder of multiple sclerosis.
Collapse
Affiliation(s)
- Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Wenjuan Dong
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Lixing Zhang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology, Shanghai Jiaotong University, Shanghai, China
| | - Tian Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States.,Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ahmad S Altiti
- Department of Chemistry, Hunter College, City University of New York, New York, NY, United States
| | - Khaleel Ali
- Department of Chemistry, Hunter College, City University of New York, New York, NY, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College, City University of New York, New York, NY, United States
| | - Victoria A Blaho
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Medical Medicine, New York, NY, United States.,Sanford Burnham Prepys Medical Discovery Institute, La Jolla, CA, United States
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Medical Medicine, New York, NY, United States
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.,State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
He P, Zhao C, Lu J, Zhang Y, Fang M, Du Y. Synthesis of 5-Thio-α-GalCer Analogues with Fluorinated Acyl Chain on Lipid Residue and Their Biological Evaluation. ACS Med Chem Lett 2019; 10:221-225. [PMID: 30783507 DOI: 10.1021/acsmedchemlett.8b00640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subclass of T cells that initiates the secretion of T helper 1 and 2 cytokines after recognizing CD1d protein presented glycolipid antigens. In this Letter, we designed and synthesized a novel series of CD1d ligand α-galactosylceramides (α-GalCers) in which the acyl chain backbone of the lipid was incorporated with fluorine atoms. The in vivo evaluation of immunostimulatory activities revealed that the synthesized α-5-thio-galactopyranosyl-N-perfluorooctanoyl phytosphingosine exhibited a remarkable potency toward selectively enhancing TH1 cytokine production with the IFN γ/IL-4 ratio of 9/1, while its perfluorotetradecanoyl counterpart showed TH2 profile with an IFN γ/IL-4 ratio of 0.59/1. The analogues synthesized here would be used as probes to study lipid-protein interactions in α-GalCer/CD1d complexes.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Chuanfang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
9
|
Abstract
A strategy for the synthesis of C-pseudodisaccharides that centers on the reaction of a C-linked crotyltin and a substituted pent-4-enal and a ring-closing metathesis-alkene dihydroxylation sequence on the derived crotylation products is illustrated in the preparation of analogues of the insulin modulatory inositol galactosamine-β-(1 → 4)-3-O-methyl-d- chiro-inositol (β-INS-2). The modularity of this approach and versatility of the pivotal crotylation products make this a potentially general methodology for diverse libraries of C-glycoinositols.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Department of Chemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States.,The Graduate Center , CUNY , 365 Fifth Avenue , New York , New York 10016 , United States
| | - David R Mootoo
- Department of Chemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States.,The Graduate Center , CUNY , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
10
|
Zhang L, Carthy CM, Zhu X. Synthesis of a glucosylated α-S-galactosylceramide as potential immunostimulant. Carbohydr Res 2017; 448:43-47. [DOI: 10.1016/j.carres.2017.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
|
11
|
Synthesis and biological evaluation of neoglycosphingolipids. Eur J Med Chem 2017; 134:43-51. [PMID: 28399449 DOI: 10.1016/j.ejmech.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Various neoglycosphingolipids were efficiently synthesized in a one-step reaction by the coupling of free sugars with an N-alkylaminooxy-functionalized ceramide analogue. The bioactivity studies demonstrated that most of these compounds could upregulate the expression of matrix metalloproteinase-9 (MMP-9, extracellular matrix proteins associated with tumor migration) in murine melanoma B16 cells in a similar manner to the natural ganglioside monosialodihexosylganglioside (GM3), which highlights the potential use of these neoglycosphingolipids as inhibitors of tumor migration.
Collapse
|
12
|
Altiti AS, Ma X, Zhang L, Ban Y, Franck RW, Mootoo DR. Synthesis and biological activities of C-glycosides of KRN 7000 with novel ceramide residues. Carbohydr Res 2017; 443-444:73-77. [PMID: 28365448 PMCID: PMC5499692 DOI: 10.1016/j.carres.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 11/28/2022]
Abstract
The identification of immunoactive agents for clinical and mechanistic applications is a very active area of research. In this vein, analogues of the potent immunostimulant KRN 7000 with diverse cytokine profiles have attracted considerable attention. These compounds have been shown to activate iNKT cells via presentation by CD1d. Herein, we report on the synthesis and activity for four new C-glycosides of KRN 7000, 11-phenylundecanoyl and 11-p-fluorophenylundecanoyl derivatives of C-KRN 7000, 2,3-bis-epi-C-KRN 7000 and the reverse amide of C-KRN 7000. In mice, compared to C-KRN 7000, 2,3-bis-epi-C-KRN 7000 stimulated higher release of the anti-inflammatory cytokine IL-4 and lower release of the inflammatory cytokines IFN-γ and IL-12. The phenyl terminated alkanoyl and reverse amide analogues were inactive. These data suggest that structure activity effects for KRN 7000 are not necessarily additive and their use in the design of new analogues will require an improved understanding of how subtle structural changes impact on cytokine activity.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA; The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Lixing Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Richard W Franck
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA; The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA
| | - David R Mootoo
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA; The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|