1
|
Di Adamo J, Ollivier N, Cantel S, Diemer V, Melnyk O. Peptide Alkyl Thioester Synthesis from Advanced Thiols and Peptide Hydrazides. J Org Chem 2024; 89:13719-13724. [PMID: 39257180 DOI: 10.1021/acs.joc.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Peptide alkyl thioesters are versatile reagents in various synthetic applications, commonly generated from peptide hydrazides and thiols. However, a notable limitation is the need for a substantial excess of the thiol reagent, restricting the usage to simple thiols. Here, we introduce an adapted procedure that significantly enhances thioester production with just a minimal thiol excess, facilitating the use of advanced thiol nucleophiles.
Collapse
Affiliation(s)
- Julie Di Adamo
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Nathalie Ollivier
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Vincent Diemer
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Oleg Melnyk
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59000, France
| |
Collapse
|
2
|
Kerdraon F, Bogard G, Snella B, Drobecq H, Pichavant M, Agouridas V, Melnyk O. Insights into the Mechanism and Catalysis of Peptide Thioester Synthesis by Alkylselenols Provide a New Tool for Chemical Protein Synthesis. Molecules 2021; 26:1386. [PMID: 33806630 PMCID: PMC7961367 DOI: 10.3390/molecules26051386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunity.
Collapse
Affiliation(s)
- Florent Kerdraon
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Gemma Bogard
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Benoît Snella
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Hervé Drobecq
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Muriel Pichavant
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Vangelis Agouridas
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
- Centrale Lille, F-59000 Lille, France
| | - Oleg Melnyk
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| |
Collapse
|
3
|
Asahina Y, Hojo H. One Step Synthesis of Fmoc-Aminoacyl- N-alkylcysteine via the Ugi Four-Component Condensation Reaction. J Org Chem 2020; 85:1458-1465. [PMID: 31793784 DOI: 10.1021/acs.joc.9b02433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A prompt preparation method of the Fmoc-aminoacyl-N-alkylcysteine dipeptide by an Ugi four-component condensation reaction is described. Through a reaction with a commercially available Fmoc-amino acid, an amine, an isocyanide, and a mercaptoacetaldehyde derivative, one step synthesis of dipeptides containing 20 kinds of natural amino acid residues was achieved, which avoided the problematic N-alkylation of S-tritylcysteine and its coupling reaction. The dipeptide was applied to the Fmoc-solid-phase peptide synthesis, and peptide thioesters were successfully obtained in high efficiency via N-alkylcysteine (NAC)-assisted thioesterification.
Collapse
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita 565-0871 , Japan
| | - Hironobu Hojo
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita 565-0871 , Japan
| |
Collapse
|
4
|
Yanase M, Nakatsu K, Cardos CJ, Konda Y, Hayashi G, Okamoto A. Cysteinylprolyl imide (CPI) peptide: a highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chem Sci 2019; 10:5967-5975. [PMID: 31360403 PMCID: PMC6566460 DOI: 10.1039/c9sc00646j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
A new crypto-thioester, cysteinylprolyl imide (CPI) peptide, offers a practical synthetic pathway and reliable reaction rate to be successfully applied to chemical protein synthesis.
Native chemical ligation (NCL) between the C-terminal peptide thioester and the N-terminal cysteinyl-peptide revolutionized the field of chemical protein synthesis. The difficulty of direct synthesis of the peptide thioester in the Fmoc method has prompted the development of crypto-thioesters that can be efficiently converted into thioesters. Cysteinylprolyl ester (CPE), which is an N–S acyl shift-driven crypto-thioester that relies on an intramolecular O–N acyl shift to displace the amide-thioester equilibrium, enabled trans-thioesterification and subsequent NCL in one pot. However, the utility of CPE is limited because of the moderate thioesterification rates and the synthetic complexity introduced by the ester group. Herein, we develop a new crypto-thioester, cysteinylprolyl imide (CPI), which replaces the alcohol leaving group of CPE with other leaving groups such as benzimidazolidinone, oxazolidinone, and pyrrolidinone. CPI peptides were efficiently synthesized by using standard Fmoc solid-phase peptide synthesis (SPPS) and subsequent on-resin imide formation. Screening of the several imide structures indicated that methyloxazolidinone-t-leucine (MeOxd-Tle) showed faster conversion into thioester and higher stability against hydrolysis under NCL conditions. Finally, by using CPMeOxd-Tle peptides, we demonstrated the chemical synthesis of affibody via N-to-C sequential, three-segment ligation and histone H2A.Z via convergent four-segment ligation. This facile and straightforward method is expected to be broadly applicable to chemical protein synthesis.
Collapse
Affiliation(s)
- Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Koki Nakatsu
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Charlane Joy Cardos
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yoshiki Konda
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Department of Biomolecular Engineering , Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan .
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|
5
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Cargoët M, Diemer V, Snella B, Desmet R, Blanpain A, Drobecq H, Agouridas V, Melnyk O. Catalysis of Thiol-Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. J Org Chem 2018; 83:12584-12594. [PMID: 30230829 DOI: 10.1021/acs.joc.8b01903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Alkyl bis(2-selanylethyl)amines catalyze the synthesis of peptide thioesters or peptide ligation from bis(2-sulfanylethyl)amido (SEA) peptides. These catalysts are generated in situ by reduction of the corresponding cyclic diselenides by tris(2-carboxyethyl)phosphine. They are particularly efficient at pH 4.0 by accelerating the thiol-thioester exchange processes, which are otherwise rate-limiting at this pH. By promoting SEA-mediated reactions at mildly acidic pH, they facilitate the synthesis of complex peptides such as cyclic O-acyl isopeptides that are otherwise hardly accessible.
Collapse
Affiliation(s)
- Marine Cargoët
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vincent Diemer
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Benoît Snella
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Rémi Desmet
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Annick Blanpain
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Hervé Drobecq
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vangelis Agouridas
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Oleg Melnyk
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| |
Collapse
|
7
|
Bi S, Liu P, Ling B, Yuan X, Jiang Y. Mechanism of N-to-S acyl transfer of N-(2-hydroxybenzyl) cysteine derivatives and origin of phenol acceleration effect. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Ohara T, Kaneda M, Saito T, Fujii N, Ohno H, Oishi S. Head-to-tail macrocyclization of cysteine-free peptides using an o -aminoanilide linker. Bioorg Med Chem Lett 2018; 28:1283-1286. [DOI: 10.1016/j.bmcl.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/28/2022]
|
9
|
Yan B, Shi W, Ye L, Liu L. Acyl donors for native chemical ligation. Curr Opin Chem Biol 2018; 46:33-40. [PMID: 29654943 DOI: 10.1016/j.cbpa.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Native chemical ligation (NCL) has become one of the most important methods in chemical syntheses of proteins. Recently, in order to expand its scope, considerable effort has been devoted to tuning the C-terminal acyl donor thioesters used in NCL. This article reviews the recent advances in the design of C-terminal acyl donors, their precursors and surrogates, and highlights some noteworthy progress that may lead the future direction of protein chemical synthesis.
Collapse
Affiliation(s)
- Bingjia Yan
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weiwei Shi
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Wang Y, Han L, Yuan N, Wang H, Li H, Liu J, Chen H, Zhang Q, Dong S. Traceless β-mercaptan-assisted activation of valinyl benzimidazolinones in peptide ligations. Chem Sci 2018; 9:1940-1946. [PMID: 29675240 PMCID: PMC5892131 DOI: 10.1039/c7sc04148a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
Peptidyl thioesters or their surrogates with C-terminal β-branched hydrophobic amino acid residues usually exhibit poor reactivities in ligation reactions. Thus, activation using exogenous additives is required to ensure an acceptable reaction efficiency. Herein, we report a traceless ligation at Val-Xaa sites under mild thiol additive-free reaction conditions, whereby the introduction of β-mercaptan on the C-terminal valine residue effectively activates the otherwise unreactive N-acyl-benzimidazolinone (Nbz), and enables the use of a one-pot ligation-desulfurization strategy to generate the desired peptide products. The orthogonality between β-thiovaline-Nbz and a conventional alkyl thioester, as well as the convenient access to the former from readily available penicillamine, also allowed expedited assembly of the peptidic hormone β-LPH and hPTH analogues, based on a kinetically controlled one-pot three-segment ligation and desulfurization strategy.
Collapse
Affiliation(s)
- Yinglu Wang
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Lin Han
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Ning Yuan
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Hongxing Li
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Jinrong Liu
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Huan Chen
- Department of Chemistry , University at Albany , Albany , New York 12222 , USA .
| | - Qiang Zhang
- Department of Chemistry , University at Albany , Albany , New York 12222 , USA .
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| |
Collapse
|
11
|
Otaka A, Shigenaga A. Protein Synthetic Chemistry Inspired by Intein-mediated Protein Splicing. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akira Otaka
- Institutes of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| | | |
Collapse
|
12
|
Rao C, Liu CF. Peptide Weinreb amide derivatives as thioester precursors for native chemical ligation. Org Biomol Chem 2017; 15:2491-2496. [PMID: 28170021 DOI: 10.1039/c7ob00103g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide Weinreb amide derivatives with an N-substituted mercaptoethyl group are designed as thioester precursors for native chemical ligation. We show that these amides undergo rapid ligation with a cysteinyl peptide under normal NCL conditions to form various Xaa-Cys peptide bonds, including the difficult Val-Cys junction. Facile synthesis of the Weinreb amide linkers allows easy access to this new type of peptide thioester precursor by standard Fmoc solid phase synthesis.
Collapse
Affiliation(s)
- Chang Rao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | | |
Collapse
|
13
|
Sakamoto K, Tsuda S, Nishio H, Yoshiya T. 1,2,4-Triazole-aided native chemical ligation between peptide-N-acyl-N′-methyl-benzimidazolinone and cysteinyl peptide. Chem Commun (Camb) 2017; 53:12236-12239. [DOI: 10.1039/c7cc07817j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel thiol-additive-free NCL using easy-to-prepare peptide-MeNbz and 1,2,4-triazole can be readily combined with one-pot desulfurization and Cys-modification.
Collapse
Affiliation(s)
| | | | - Hideki Nishio
- Peptide Institute, Inc
- Osaka 567-0085
- Japan
- Graduate School of Science
- Osaka University
| | | |
Collapse
|