1
|
Zelentsova MV, Sandulenko IV, Ambartsumyan AA, Danshina AA, Moiseev SK. C(21)-Di- and monofluorinated scaffold for thevinol/orvinol-based opioid receptor ligands. Org Biomol Chem 2023; 21:9091-9100. [PMID: 37947030 DOI: 10.1039/d3ob01577g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Defluorination of the readily available 21,21,21-trifluorothevinone (7) with Mg + Me3SiCl allows the preparation of 21,21-difluorothevinone (10) and 21-fluorothevinone (11), which can be used as the starting compounds for syntheses of 21,21-difluoro- and 21-fluoro-substituted relatives of thevinols and orvinols. Taken together, thevinols and orvinols are well known to constitute a family of the highly potent 4,5α-epoxy-18,19-endo-(etheno/ethano)morphinan-type opioid receptor ligands. Alternatively, 10 and 18,19-dihydro-21,21-difluorothevinone (13) have been synthesized by the addition of Me3SiCHF2 to the carbonyl function of thevinal (12) and dihydrothevinal (18) followed by oxidation of the intermediate C(21)-difluorinated secondary alcohols. 21,21-Difluorothevinols were obtained both by the addition of RMgX or RLi to the 21,21-difluoroketones and by the addition of Me3SiCHF2 to the carbonyl function of the non-fluorinated 18,19-endo-(etheno/ethano)morphinan ketones. In general, these addition reactions have been shown to result in mixtures of the C(21)-epimeric alcohols. However, in some cases, the reactions proceeded with high stereoselectivity allowing the isolation of one of the epimeric alcohols by conventional crystallization. Preparations of the 21,21-difluorothevinols bearing an allyl, cyclopropylmethyl, or cyclobutylmethyl group at the N(17) nitrogen are also reported.
Collapse
Affiliation(s)
- Maria V Zelentsova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| | - Irina V Sandulenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| | - Asmik A Ambartsumyan
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| | - Anastasia A Danshina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Sergey K Moiseev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Rajakumara E, Abhishek S, Nitin K, Saniya D, Bajaj P, Schwaneberg U, Davari MD. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design. ACS Chem Biol 2022; 17:266-280. [PMID: 35041385 DOI: 10.1021/acschembio.1c00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzyme-based synthetic chemistry provides a green way to synthesize industrially important chemical scaffolds and provides incomparable substrate specificity and unmatched stereo-, regio-, and chemoselective product formation. However, using biocatalysts at an industrial scale has its challenges, like their narrow substrate scope, limited stability in large-scale one-pot reactions, and low expression levels. These limitations can be overcome by engineering and fine-tuning these biocatalysts using advanced protein engineering methods. A detailed understanding of the enzyme structure and catalytic mechanism and its structure-function relationship, cooperativity in binding of substrates, and dynamics of substrate-enzyme-cofactor complexes is essential for rational enzyme engineering for a specific purpose. This Review covers all these aspects along with an in-depth categorization of various industrially and pharmaceutically crucial bisubstrate enzymes based on their reaction mechanisms and their active site and substrate/cofactor-binding site structures. As the bisubstrate enzymes constitute around 60% of the known industrially important enzymes, studying their mechanism of actions and structure-activity relationship gives significant insight into deciding the targets for protein engineering for developing industrial biocatalysts. Thus, this Review is focused on providing a comprehensive knowledge of the bisubstrate enzymes' structure, their mechanisms, and protein engineering approaches to develop them into industrial biocatalysts.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Kulhar Nitin
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Priyanka Bajaj
- National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| |
Collapse
|
3
|
Farajpour B, Alizadeh A. Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Org Biomol Chem 2022; 20:8366-8394. [DOI: 10.1039/d2ob01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides a review of the applications of α,α-dicyanoolefins as versatile vinylogous nucleophiles in the synthesis of various cyclic compounds, covering the literature from the past 13 years.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
4
|
Synthesis, biological evaluation, molecular docking and in silico ADMET screening studies of novel isoxazoline derivatives from acridone. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Das T. Desymmetrization of Cyclopentene‐1,3‐Diones via Alkylation, Arylation, Amidation and Cycloaddition Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tapas Das
- Department of Chemistry NIT Jamshedpur Jamshedpur 831014 India
| |
Collapse
|
6
|
Santhi J, Baire B. One‐pot, Direct Synthesis of 3‐Hydroxy‐3‐aryl‐1‐indanones and their 2‐Benzylidene Derivatives from 2‐Alkynylbenzophenones. ChemistrySelect 2020. [DOI: 10.1002/slct.202001104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jampani Santhi
- Department of Chemistry Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| | - Beeraiah Baire
- Department of Chemistry Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India
| |
Collapse
|
7
|
Johnson ME, Fung LWM. Structural approaches to pathway-specific antimicrobial agents. Transl Res 2020; 220:114-121. [PMID: 32105648 PMCID: PMC7293926 DOI: 10.1016/j.trsl.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.
| | - Leslie W-M Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
8
|
Bhajammanavar V, Mallik S, Baidya M. Vinylogous Annulation Cascade Toward Stereoselective Synthesis of Highly Functionalized Indanone Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vinod Bhajammanavar
- Department of ChemistryIndian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | - Sumitava Mallik
- Department of ChemistryIndian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| | - Mahiuddin Baidya
- Department of ChemistryIndian Institute of Technology Madras Chennai 600 036, Tamil Nadu India
| |
Collapse
|
9
|
Timo GO, Reis RSSVD, Melo AFD, Costa TVL, Magalhães PDO, Homem-de-Mello M. Predictive Power of In Silico Approach to Evaluate Chemicals against M. tuberculosis: A Systematic Review. Pharmaceuticals (Basel) 2019; 12:E135. [PMID: 31527425 PMCID: PMC6789803 DOI: 10.3390/ph12030135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an endemic bacterium worldwide that causes tuberculosis (TB) and involves long-term treatment that is not always effective. In this context, several studies are trying to develop and evaluate new substances active against Mtb. In silico techniques are often used to predict the effects on some known target. We used a systematic approach to find and evaluate manuscripts that applied an in silico technique to find antimycobacterial molecules and tried to prove its predictive potential by testing them in vitro or in vivo. After searching three different databases and applying exclusion criteria, we were able to retrieve 46 documents. We found that they all follow a similar screening procedure, but few studies exploited equal targets, exploring the interaction of multiple ligands to 29 distinct enzymes. The following in vitro/vivo analysis showed that, although the virtual assays were able to decrease the number of molecules tested, saving time and money, virtual screening procedures still need to develop the correlation to more favorable in vitro outcomes. We find that the in silico approach has a good predictive power for in vitro results, but call for more studies to evaluate its clinical predictive possibilities.
Collapse
Affiliation(s)
- Giulia Oliveira Timo
- InSiliTox, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Adriana Françozo de Melo
- InSiliTox, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Pérola de Oliveira Magalhães
- Laboratory of Natural Products, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Mauricio Homem-de-Mello
- InSiliTox, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil.
| |
Collapse
|
10
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Biochemistry 2019; 58:1918-1930. [PMID: 30912442 PMCID: PMC6653581 DOI: 10.1021/acs.biochem.9b00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
N-Acyl sulfamoyladenosines (acyl-AMS) have been used
extensively to inhibit adenylate-forming enzymes that are involved in a wide
range of biological processes. These acyl-AMS inhibitors are nonhydrolyzable
mimics of the cognate acyl adenylate intermediates that are bound tightly by
adenylate-forming enzymes. However, the anionic acyl sulfamate moiety presents a
pharmacological liability that may be detrimental to cell permeability and
pharmacokinetic profiles. We have previously developed the acyl sulfamate
OSB-AMS (1) as a potent inhibitor of the adenylate-forming enzyme
MenE, an o-succinylbenzoate-CoA (OSB-CoA) synthetase that is
required for bacterial menaquinone biosynthesis. Herein, we report the use of
computational docking to develop novel, non-acyl sulfamate inhibitors of MenE. A
m-phenyl ether-linked analogue (5) was found
to be the most potent inhibitor (IC50 = 8 μM;
Kd = 244 nM), and its X-ray co-crystal structure
was determined to characterize its binding mode in comparison to the
computational prediction. This work provides a framework for the development of
potent non-acyl sulfamate inhibitors of other adenylate-forming enzymes in the
future.
Collapse
|
12
|
Affiliation(s)
- Graham Pattison
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry UK
| |
Collapse
|