1
|
Shuai S, Mao J, Zhou F, Yan Q, Chen L, Li J, Walsh PJ, Liang G. Base-Promoted Synthesis of Isoquinolines through a Tandem Reaction of 2-Methyl-arylaldehydes and Nitriles. J Org Chem 2024; 89:6793-6797. [PMID: 38691096 DOI: 10.1021/acs.joc.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A convenient method for preparing 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety of isoquinolines (23 examples, ≤90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.
Collapse
Affiliation(s)
- Sujuan Shuai
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fan Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qifeng Yan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
2
|
Jha N, Guo W, Kong WY, Tantillo DJ, Kapur M. Regiocontrol via Electronics: Insights into a Ru-Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C Bond Activation of Cyclopropanols. Chemistry 2023; 29:e202301551. [PMID: 37403766 DOI: 10.1002/chem.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
A site-selective C(3)/C(4)-alkylation of N-pyridylisoquinolones is achieved by employing C-C bond activation of cyclopropanols under Ru(II)-catalyzed/Cu(II)-mediated conditions. The regioisomeric ratios of the products follow directly from the electronic nature of the cyclopropanols and isoquinolones used, with electron-withdrawing groups yielding predominantly the C(3)-alkylated products, whereas the electron-donating groups primarily generate the C(4)-alkylated isomers. Density functional theory calculations and detailed mechanistic investigations suggest the simultaneous existence of the singlet and triplet pathways for the C(3)- and C(4)-product formation. Further transformations of the products evolve the utility of the methodology thereby yielding scaffolds of synthetic relevance.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| | - Wentao Guo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| |
Collapse
|
3
|
Lin TC, Chan CK, Chung YH, Wang CC. Environmentally friendly Nafion-catalyzed synthesis of 3-substituted isoquinoline by using hexamethyldisilazane as a nitrogen source under microwave irradiation. Org Biomol Chem 2023; 21:7316-7326. [PMID: 37531171 DOI: 10.1039/d3ob01032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This study developed an eco-friendly method to synthesize 3-arylisoquinoline from 2-alkynylbenzaldehydes using Nafion® NR50 as an acidic catalyst and hexamethyldisilazane (HMDS) as a nitrogen source. The reaction proceeded via a 6-exo-dig cyclization under microwave irradiation, giving the corresponding isoquinolines in excellent yields. The advantages of this protocol include: (1) the use of recyclable acid catalysts, (2) transition-metal-free catalysis, and (3) the effective formation of the target product. These features make this methodology a promising approach for the sustainable and efficient synthesis of 3-arylisoquinoline. Some structures were also confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Hsiu Chung
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | |
Collapse
|
4
|
Gupta P, Madhavan S, Kapur M. Synthesis of Ferrocene 1,3-Derivatives by Distal C-H Activation. Angew Chem Int Ed Engl 2023; 62:e202305278. [PMID: 37365783 DOI: 10.1002/anie.202305278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
The third position of cyclopentadienyl ring of a monosubstituted ferrocene has remained as an inaccessible chemical space for direct functionalization. Until recently, functionalizing the C(3)-position while bypassing the predominantly active C(2)-position is the most challenging task. Herein, we report a distal C-H functionalization of monosubstituted ferrocenes using an easily removable directing group with precise site-selectivity, under a PdII / mono-N-protected amino-acid ligand catalytic system. The robust synthetic protocol leads to the synthesis of ferrocene 1,3-derivatives with broad scope in olefins while functionalizing ferrocenyl methylamine in moderate to good yields via a highly strained ferrocene appended 12-membered palladacycle intermediate.
Collapse
Affiliation(s)
- Princi Gupta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Suchithra Madhavan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
5
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Domino Three-Component Benzannulation: Access to Isoquinolines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
6
|
Tang S, Wu Z, Gao M, Li G, Yao Z. Total Synthesis of Suberitines A–D Featuring Tunable Biomimetic Late‐Stage Oxidative Dearomatization and Acetalization. Chemistry 2022; 28:e202200644. [DOI: 10.1002/chem.202200644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Shunjiang Tang
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road 266003 Qingdao Shandong P. R. China
- Laboratory of Marine Drugs and Biological Products Pilot National Laboratory for Marine Science and Technology School of Medicine and Pharmacy Ocean University of China 168 Middle Wenhai Road 266235 Qingdao Shandong P. R. China
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing Jiangsu P. R. China
| | - Zhihui Wu
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road 266003 Qingdao Shandong P. R. China
- Laboratory of Marine Drugs and Biological Products Pilot National Laboratory for Marine Science and Technology School of Medicine and Pharmacy Ocean University of China 168 Middle Wenhai Road 266235 Qingdao Shandong P. R. China
| | - Ming Gao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing Jiangsu P. R. China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road 266003 Qingdao Shandong P. R. China
- Laboratory of Marine Drugs and Biological Products Pilot National Laboratory for Marine Science and Technology School of Medicine and Pharmacy Ocean University of China 168 Middle Wenhai Road 266235 Qingdao Shandong P. R. China
| | - Zhu‐Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing Jiangsu P. R. China
| |
Collapse
|
7
|
Silyanova EA, Samet AV, Semenov VV. A Two-Step Approach to a Hexacyclic Lamellarin Core via 1,3-Dipolar Cycloaddition of Isoquinolinium Ylides to Nitrostilbenes. J Org Chem 2022; 87:6444-6453. [PMID: 35467869 DOI: 10.1021/acs.joc.2c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 1,3-dipolar cycloaddition reaction of isoquinolinium ylides to nitrostilbenes provides an approach to 1,2-diarylpyrrolo[2,1-a]isoquinolinium-3-carboxylates and then to a complete hexacyclic lamellarin core.
Collapse
Affiliation(s)
- E A Silyanova
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - A V Samet
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - V V Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
8
|
Jha N, Singh RP, Saxena P, Kapur M. Iridium(III)-Catalyzed C(3)-H Alkylation of Isoquinolines via Metal Carbene Migratory Insertion. Org Lett 2021; 23:8694-8698. [PMID: 34756040 DOI: 10.1021/acs.orglett.1c03054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An Ir(III)-catalyzed C(3)-H alkylation of N-acetyl-1,2-dihydroisoquinolines with diverse acceptor-acceptor diazo compounds has been achieved under a single catalytic system via metal carbene migratory insertion. Moreover, further synthetic transformations of the alkylated products such as aromatization, selective decarboxylation, and decarbonylation lead to the formation of several synthetically viable isoquinoline derivatives having immense potentials.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Roushan Prakash Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Paridhi Saxena
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
9
|
Zhao K, Du Y, Peng Q, Yu WH, Wang BQ, Feng C, Xiang SK. Regiodivergent C-H Arylation of Triphenylene Derivatives Controlled by Electronic Effects of Diaryliodonium Salts. J Org Chem 2021; 86:2986-2997. [PMID: 33481590 DOI: 10.1021/acs.joc.0c02900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A regiodivergent C-H arylation of triphenylene derivatives with diaryliodonium salts was developed. The regiodivergence was controlled by electronic effects of diaryliodonium salts. When the aryl(mesityl)iodonium salts bearing strong electron-donating groups at the para-position of aryl groups were used, the arylation reactions occurred ortho to amide groups. However, if the aryl(mesityl)iodonium salts bearing electron-withdrawing groups or weak electron-donating groups at the para-position of aryl groups were utilized, the arylation reactions occurred meta to amide groups.
Collapse
Affiliation(s)
- Ke Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yu Du
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qiong Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
10
|
Meesa SR, Naikawadi PK, Gugulothu K, Shiva Kumar K. Catalyst and solvent switched divergent C-H functionalization: oxidative annulation of N-aryl substituted quinazolin-4-amine with alkynes. Org Biomol Chem 2020; 18:3032-3037. [PMID: 32242597 DOI: 10.1039/d0ob00318b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of site-selective C-H functionalizations/annulations is one of the most challenging practices in synthetic organic chemistry particularly for substrates bearing several similarly reactive C-H bonds. Herein, we describe catalyst and solvent controlled ortho/peri site-selective oxidative annulation of C-H bonds of N-aryl substituted quinazolin-4-amines with internal alkynes. The ortho C-H selective annulation was observed using Pd-catalyst in DMF to give indole-quinazoline derivatives, while, Ru-catalyst in PEG-400 favoured the peri C-H bond annulation exclusively to furnish pyrido-quinazoline derivatives.
Collapse
Affiliation(s)
| | | | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | - K Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| |
Collapse
|
11
|
Mehra MK, Sharma S, Rangan K, Kumar D. Substrate or Solvent-Controlled PdII
-Catalyzed Regioselective Arylation of Quinolin-4(1H
)-ones Using Diaryliodonium Salts: Facile Access to Benzoxocine and Aaptamine Analogues. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manish K. Mehra
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Shivani Sharma
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Krishnan Rangan
- Department of Chemistry; BITS Pilani; Hyderabad Campus 500078 Secunderabad Telangana India
| | - Dalip Kumar
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| |
Collapse
|
12
|
Das R, Khot NP, Deshpande AS, Kapur M. Catalyst Control in Switching the Site Selectivity of C-H Olefinations of 1,2-Dihydroquinolines: An Approach to Positional-Selective Functionalization of Quinolines. Chemistry 2019; 26:927-938. [PMID: 31625636 DOI: 10.1002/chem.201904512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/19/2022]
Abstract
A unique approach to achieve site-selective C-H olefinations exclusively at the C-3- or C-8-positions in the quinoline framework has been developed by catalyst control. Distal C(3)-H functionalization is achieved by using palladium catalysis, whereas proximal C(8)-H functionalization is obtained by employing ruthenium catalysis. Switching the site selectivity within a single substrate directly indicates two diverse pathways, which are operating under the palladium- and ruthenium-catalyzed reaction conditions.
Collapse
Affiliation(s)
- Riki Das
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India.,Present address: Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455-0431, USA
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Akanksha Santosh Deshpande
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
13
|
Ji X, Huang Z, Lumb JP. Synthesis of 1,2-Dihydroisoquinolines by a Modified Pomeranz–Fritsch Cyclization. J Org Chem 2019; 85:1062-1072. [PMID: 31854981 DOI: 10.1021/acs.joc.9b02987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiang Ji
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Zheng Huang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Dong Y, Zhang X, Chen J, Zou W, Lin S, Xu H. Switching the site-selectivity of C-H activation in aryl sulfonamides containing strongly coordinating N-heterocycles. Chem Sci 2019; 10:8744-8751. [PMID: 31762973 PMCID: PMC6857669 DOI: 10.1039/c9sc03691a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
The limitations of arene C-H functionalization of aryl sulfonamides containing strongly coordinating N-heterocycles were overcome using a Rh(iii) catalyst. The site-selectivity of C-H carbenoid functionalization at the ortho position relative to either the sulfonamide or N-heterocycle directing groups was elegantly switched using solvents of different polarities and different additive concentrations. Importantly, sulfonamide-group-directed ortho-C-H carbenoid functionalization tolerated strongly coordinating N-heterocycles, including pyridine, pyrrole, thiazole, pyrimidine, and pyrazine. Density functional theory (DFT) calculations were performed to rationalize the reaction mechanisms and the influence of reaction polarity.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China .
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - XuePeng Zhang
- Lab of Computational and Drug Design , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Jiajing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China .
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Wenxing Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China .
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China .
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China .
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
15
|
Prasad B, Phanindrudu M, Tiwari DK, Kamal A. Transition-Metal-Free One-Pot Tandem Synthesis of 3-Ketoisoquinolines from Aldehydes and Phenacyl Azides. J Org Chem 2019; 84:12334-12343. [PMID: 31502837 DOI: 10.1021/acs.joc.9b01534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and transition-metal-free strategy for the synthesis of 3-keto-isoquinolines in one pot has been developed from the easily accessible 2-(formylphenyl)acrylates and phenacyl azides. Various substituted aldehydes and phenacyl azides were successfully employed in this transformation to furnish a variety 3-keto-isoquinolines in very good yields. A number of controlled experiments were conducted to postulate the reaction mechanism. Secondary functionalizations of 2-keto-isoquinolins were also performed to showcase the synthetic utility.
Collapse
Affiliation(s)
- Budaganaboyina Prasad
- Division of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Mandalaparthi Phanindrudu
- Division of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research , Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus , Raebareli Road , Lucknow 226014 , India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , 110 062 New Delhi , India
| |
Collapse
|
16
|
Manna S, Prabhu KR. Visible-Light-Mediated Direct Decarboxylative Acylation of Electron-Deficient Heteroarenes Using α-Ketoacids. J Org Chem 2019; 84:5067-5077. [PMID: 30933509 DOI: 10.1021/acs.joc.9b00004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acylation of electron-deficient heteroaromatic compounds has been developed using visible light. α-Ketoacids have been used as an efficient source of acyl radicals under photoredox conditions. The in situ generated acyl radicals from α-ketoacids have been coupled to a wide variety of electron-deficient heteroaromatic compounds in a Minisci type reaction. This method would be attractive to access biologically attractive molecules.
Collapse
Affiliation(s)
- Sabyasachi Manna
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , Karnataka , India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , Karnataka , India
| |
Collapse
|
17
|
Kumar P, Kapur M. Catalyst Control in Positional-Selective C-H Alkenylation of Isoxazoles and a Ruthenium-Mediated Assembly of Trisubstituted Pyrroles. Org Lett 2019; 21:2134-2138. [PMID: 30860851 DOI: 10.1021/acs.orglett.9b00446] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High levels of catalyst control are demonstrated in determining the positional selectivity in C-H alkenylation of isoxazoles. A cationic rhodium-mediated, strong-directing group promotes C( sp2)-H activation at the proximal aryl ring whereas, the palladium-mediated electrophilic metallation leads to the C( sp2)-H activation at the distal position of the directing group. Synthetic elaboration of this C-H alkenylation product via ruthenium and copper co-catalysis leads to an efficient method for the assembly of densely substituted pyrroles.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri , Bhopal 462066 MP , India
| | - Manmohan Kapur
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri , Bhopal 462066 MP , India
| |
Collapse
|
18
|
Tiwari VK, Kapur M. Catalyst-controlled positional-selectivity in C–H functionalizations. Org Biomol Chem 2019; 17:1007-1026. [DOI: 10.1039/c8ob02272k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C–H bonds are ubiquitous in organic molecules and typically these bonds are chemically indistinct from each other and it would be highly advantageous for a synthetic chemist to have the ability to choose which C–H bond is functionalized in a given molecule.
Collapse
Affiliation(s)
- Virendra Kumar Tiwari
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Manmohan Kapur
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| |
Collapse
|
19
|
Nájera C, Beletskaya IP, Yus M. Metal-catalyzed regiodivergent organic reactions. Chem Soc Rev 2019; 48:4515-4618. [DOI: 10.1039/c8cs00872h] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses metal-catalysed regiodivergent additions, allylic substitutions, CH-activation, cross-couplings and intra- or intermolecular cyclisations.
Collapse
Affiliation(s)
- Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
| | - Irina P. Beletskaya
- Chemistry Department
- M. V. Lomonosov Moscow State University
- 119992 Moscow
- Russia
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
| |
Collapse
|
20
|
Kumar GS, Khot NP, Kapur M. Oxazolinyl‐Assisted Ru(II)‐Catalyzed C−H Functionalization Based on Carbene Migratory Insertion: A One‐Pot Three‐Component Cascade Cyclization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801362] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gangam Srikanth Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| | - Nandkishor Prakash Khot
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| |
Collapse
|
21
|
Maity S, Das D, Sarkar S, Samanta R. Direct Pd(II)-Catalyzed Site-Selective C5-Arylation of 2-Pyridone Using Aryl Iodides. Org Lett 2018; 20:5167-5171. [DOI: 10.1021/acs.orglett.8b02112] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saurabh Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Das R, Kapur M. Transition-Metal-Catalyzed C−H Functionalization Reactions of π-Deficient Heterocycles. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800204] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Riki Das
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhauri Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhauri Bhopal 462066, MP India
| |
Collapse
|
23
|
Anil Kumar K, Kannaboina P, Das P. Ruthenium-catalyzed site-selective C-H arylation of 2-pyridones and 1-isoquinolinones. Org Biomol Chem 2018. [PMID: 28621792 DOI: 10.1039/c7ob01277b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient Ru(ii)-catalyzed site-selective C-H arylation of 2-pyridones and 1-isoquinolinones was achieved with boronic acids by using pyridine as a directing group. The developed protocol is general and provides rapid access to an array of C6-arylated 2-pyridones and C3-arylated 1-isoquinolinones in excellent yields. These designed arylated 2-pyridones and 1-isoquinolinones can serve as key structural motifs for accessing functionalized pyridines and isoquinolines.
Collapse
Affiliation(s)
- K Anil Kumar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| | | | | |
Collapse
|
24
|
Saini G, Kumar P, Kumar GS, Mangadan ARK, Kapur M. Palladium-Catalyzed α-Arylation of Silylenol Ethers in the Synthesis of Isoquinolines and Phenanthridines. Org Lett 2018; 20:441-444. [DOI: 10.1021/acs.orglett.7b03776] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gaurav Saini
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| | - Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| | - Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| | - Arun Raj Kizhakkayil Mangadan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
25
|
Singh S, Cooper S, Glenn JR, Beresford J, Percival LR, Tyndall JDA, Hill SJ, Kilpatrick LE, Vernall AJ. Synthesis of novel (benzimidazolyl)isoquinolinols and evaluation as adenosine A1 receptor tools. RSC Adv 2018; 8:16362-16369. [PMID: 35542203 PMCID: PMC9080270 DOI: 10.1039/c7ra13148h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/21/2018] [Indexed: 11/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors in eukaryotes. The adenosine A1 receptor (A1AR) is a class A GPCR that is of interest as a therapeutic target particularly in the treatment of cardiovascular disease and neuropathic pain. Increased knowledge of the role A1AR plays in mediating these pathophysiological processes will help realise the therapeutic potential of this receptor. There is a lack of enabling tools such as selective fluorescent probes to study A1AR, therefore we designed a series of (benzimidazolyl)isoquinolinols conjugated to a fluorescent dye (31–35, 42–43). An improved procedure for the synthesis of isoquinolinols from tetrahydroisoquinolinols via oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and atmospheric oxygen is reported. This synthetic method offers advantages over previous metal-based methods for the preparation of isoquinolinols and isoquinolines, which are important scaffolds found in many biologically active compounds and natural products. We report the first synthesis of the (benzimidazolyl)isoquinolinol compound class, however the fluorescent conjugates were not successful as A1AR fluorescent ligands. Mild, metal free aromatization of tetrahydroisoquinolinols. Synthesis of (benzimidazolyl)isoquinolinols.![]()
Collapse
Affiliation(s)
- Sameek Singh
- School of Pharmacy
- University of Otago
- Dunedin 9054
- New Zealand
| | - Samantha L. Cooper
- Physiology, Pharmacology and Neuroscience Division
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | - Jacqueline R. Glenn
- Physiology, Pharmacology and Neuroscience Division
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | - Jessica Beresford
- Physiology, Pharmacology and Neuroscience Division
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | - Lydia R. Percival
- Physiology, Pharmacology and Neuroscience Division
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | | | - Stephen J. Hill
- Physiology, Pharmacology and Neuroscience Division
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | - Laura E. Kilpatrick
- Physiology, Pharmacology and Neuroscience Division
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | | |
Collapse
|
26
|
Shen Y, Cindy Lee WC, Gutierrez DA, Li JJ. Palladium-Catalyzed Direct C(sp2)–H ortho-Arylation of Anilides Using 2-Aminophenylpyrazole as the Directing Group. J Org Chem 2017; 82:11620-11625. [DOI: 10.1021/acs.joc.7b01883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuning Shen
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - David A. Gutierrez
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| | - Jie Jack Li
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, United States
| |
Collapse
|
27
|
Das R, Kumar GS, Kapur M. Amides as Weak Coordinating Groups in Proximal C-H Bond Activation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700546] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Riki Das
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road, Bhauri 462066 Bhopal MP India
| | - Gangam Srikanth Kumar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road, Bhauri 462066 Bhopal MP India
| | - Manmohan Kapur
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road, Bhauri 462066 Bhopal MP India
| |
Collapse
|
28
|
Nareddy P, Jordan F, Szostak M. Recent Developments in Ruthenium-Catalyzed C–H Arylation: Array of Mechanistic Manifolds. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01645] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Nareddy
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
29
|
Kumar GS, Kumar P, Kapur M. Traceless Directing-Group Strategy in the Ru-Catalyzed, Formal [3 + 3] Annulation of Anilines with Allyl Alcohols: A One-Pot, Domino Approach for the Synthesis of Quinolines. Org Lett 2017; 19:2494-2497. [DOI: 10.1021/acs.orglett.7b00715] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gangam Srikanth Kumar
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| | - Pravin Kumar
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|