1
|
Shuai S, Mao J, Zhou F, Yan Q, Chen L, Li J, Walsh PJ, Liang G. Base-Promoted Synthesis of Isoquinolines through a Tandem Reaction of 2-Methyl-arylaldehydes and Nitriles. J Org Chem 2024; 89:6793-6797. [PMID: 38691096 DOI: 10.1021/acs.joc.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A convenient method for preparing 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety of isoquinolines (23 examples, ≤90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.
Collapse
Affiliation(s)
- Sujuan Shuai
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fan Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qifeng Yan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
2
|
Dalal A, Bodak S, Babu SA. Picolinamide-assisted ortho-C-H functionalization of pyrenylglycine derivatives using aryl iodides. Org Biomol Chem 2024; 22:1279-1298. [PMID: 38258893 DOI: 10.1039/d3ob01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chemical transformations involving the pyrenylglycine motif (an unnatural amino acid) and practical methods toward it are seldom known. This work aimed at developing a method for synthesizing novel pyrenylglycine (pyrene-based glycine) unnatural amino acid derivatives. To realize this, initially, a new pyrenylglycine substrate possessing the picolinamide moiety was assembled via the Ugi multicomponent reaction. The picolinamide moiety linked to amine substrates is a well-known bidentate directing group for accomplishing the site-selective γ-C-H functionalization of amines. Subsequently, it was aimed at using a Pd(II)-catalyzed bidentate directing group-aided γ-C-H arylation strategy for generating a wide range of unprecedented examples of C(2)-H arylated pyrenylglycines. Accordingly, pyrenylglycine possessing the picolinamide moiety was subjected to Pd(II)-catalyzed C(2)-H arylation in the non-K-region to afford a library of C(2)-arylated pyrenylglycines (π-extended pyrenes). Additionally, pyrenylglycine-based small peptides were assembled using C(2)-arylated pyrenylglycines. The X-ray structure of a representative compound was obtained, which corroborated the structure of pyrenylglycine and the regioselectivity of C(2)-H arylation of the pyrene in the non-K-region.
Collapse
Affiliation(s)
- Arup Dalal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Subhankar Bodak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
3
|
Das A, Mandal R, Ravi Sankar HS, Kumaran S, Premkumar JR, Borah D, Sundararaju B. Reversal of Regioselectivity in Asymmetric C-H Bond Annulation with Bromoalkynes under Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315005. [PMID: 38095350 DOI: 10.1002/anie.202315005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 12/30/2023]
Abstract
Metal-catalyzed asymmetric C-H bond annulation strategy offers a versatile platform, allowing the construction of complex P-chiral molecules through atom- and step-economical fashion. However, regioselective insertion of π-coupling partner between M-C bond with high enantio-induction remain elusive. Using commercially available Co(II) salt and chiral-Salox ligands, we demonstrate an unusual protocol for the regio-reversal, enantioselective C-H bond annulation of phosphinamide with bromoalkyne through desymmetrization. The reaction proceeds through ligand-assisted enantiodetermining cyclocobaltation followed by regioselective insertion of bromoalkyne between Co-C, subsequent reductive elimination, and halogen exchange with carboxylate resulted in P-stereogenic compounds in excellent ee (up to >99 %). The isolation of cobaltacycle involved in the catalytic cycle and the outcome of control experiments provide support for a plausible mechanism.
Collapse
Affiliation(s)
- Abir Das
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | | | - Subramani Kumaran
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, 620017, Tiruchirappalli, Tamil Nadu, India
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, Maharashtra, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| |
Collapse
|
4
|
Ma P, Wang Y, Ma N, Wang J. Alkaline-Metal-Promoted Divergent Synthesis of 1-Aminoisoquinolines and Isoquinolines. J Org Chem 2024. [PMID: 38193431 DOI: 10.1021/acs.joc.3c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkaline-metal-promoted divergent syntheses of 1-aminoisoquinolines and isoquinolines have been reported involving 2-methylaryl aldehydes, nitriles, and LiN(SiMe3)2 as reactants. In addition, the three-component reaction of 2-methylaryl nitriles, aldehydes, and LiN(SiMe3)2 has been developed to furnish 1-aminoisoquinolines. This protocol features readily available starting materials, excellent chemoselectivity, broad substrate scope, and satisfactory yields.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ning Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Wu YJ, Chen JH, Teng MY, Li X, Jiang TY, Huang FR, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Annulation of Benzylamines with Alkynes: Application to the Modular and Asymmetric Syntheses of Bioactive Molecules. J Am Chem Soc 2023; 145:24499-24505. [PMID: 38104268 DOI: 10.1021/jacs.3c10714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tian-Yu Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Yang D, Xu H, Zhang X, Hu Y, Huang D, Zhao H. Ru-catalyzed C-H activation/cyclization of oximes with sulfoxonium ylides to access isoquinolines. Org Biomol Chem 2023; 21:6750-6756. [PMID: 37554009 DOI: 10.1039/d3ob00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An external oxidant free Ru(II)-catalyzed C-H activation followed by an intermolecular annulation between oximes and sulfoxonium ylides has been developed. This transformation proceeds smoothly with a broad range of substrates, affording a series of isoquinoline derivatives in moderate to good yields. This protocol was successfully applied to the synthesis of moxaverine.
Collapse
Affiliation(s)
- Darun Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Hongyan Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Xuejun Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Yuntao Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Decai Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| |
Collapse
|
7
|
Bora J, Dutta M, Chetia B. Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Parihar H, Thirupathi N. Cobalt(II)-Catalyzed Directed C–H Functionalization/[3+2] Annulation of N-Arylguanidines with Alkynes. Org Lett 2022; 24:8098-8103. [DOI: 10.1021/acs.orglett.2c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Harish Parihar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
9
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Domino Three-Component Benzannulation: Access to Isoquinolines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
10
|
|
11
|
Zi Q, Li M, Cong J, Deng G, Duan S, Yin M, Chen W, Jing H, Yang X, Walsh PJ. Super-Electron-Donor 2-Azaallyl Anions Enable Construction of Isoquinolines. Org Lett 2022; 24:1786-1790. [PMID: 35212552 DOI: 10.1021/acs.orglett.2c00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein is introduced the application of "super-electron-donor"(SED) 2-azaallyl anions in a tandem reduction/radical cyclization/radical coupling/aromatization protocol that enables the rapid construction of isoquinolines. The value of this transition-metal-free method is highlighted by the wide range of isoquinoline ethyl amines prepared with good functional group tolerance and yields. An operationally simple gram scale synthesis is also conducted, confirming the scalability.
Collapse
Affiliation(s)
- Quanxing Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Meng Yin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Zhou Q, Song X, Zhang X, Fan X. Synthesis of Spiro[benzo[ d][1,3]oxazine-4,4'-isoquinoline]s via [4+1+1] Annulation of N-Aryl Amidines with Diazo Homophthalimides and O 2. Org Lett 2022; 24:1280-1285. [PMID: 35129363 DOI: 10.1021/acs.orglett.1c04193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthesis of spiro[benzo[d][1,3]oxazine-4,4'-isoquinoline]s through a unique [4+1+1] annulation of N-aryl amidines with diazo homophthalimides and O2 is presented. This unprecedented spirocyclization reaction features readily obtainable substrates, structurally and pharmaceutically attractive products, a cost-free and clean oxygen source, sustainable reaction medium, tolerance of a broad spectrum of functional groups, and an interesting reaction mechanism based on sequential C(sp2)-H/C(sp3)-H bond cleavage and oxygen insertion.
Collapse
Affiliation(s)
- Qianting Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xia Song
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Das A, Chatani N. Rh(I)-catalysed imine-directed C-H functionalization via the oxidative [3 + 2] cycloaddition of benzylamine derivatives with maleimides. Chem Commun (Camb) 2022; 58:1123-1126. [PMID: 34981093 DOI: 10.1039/d1cc06622f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rh(I)-catalysed imine-directed oxidative [3 + 2] cycloaddition of benzylamines with maleimides is reported. A wide range of both benzylamines and maleimides is applicable to the reaction. A one-pot three component strategy using benzylamines, 2-pyridinecarboxaldehyde, and maleimides is successfully achieved. Mechanistic studies including deuterium labelling experiments suggest that a zwitterionic intermediate is formed and is a key intermediate through the Rh-catalysed activation of a benzylic C(sp3)-H bond of the imine.
Collapse
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Tomar R, Bhattacharya D, Arulananda Babu S. Direct lactamization of β‐arylated δ‐aminopentanoic acid carboxamides: En route to 4‐aryl‐ 2‐piperidones, piperidines, antituberculosis molecule Q203 (Telacebec) and its analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
15
|
Fu Z, Cao X, Yin J, Gou Z, Yi X, Cai H. ortho-C—H Bond Functionalization of Carboxylic Acid Using Carboxyl as a Traceless Directing Group Based on the Strategy of “Two Birds with One Stone”. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chen K, Lv S, Lai R, Yang Z, Hai L, Nie R, Wu Y. Cobalt‐Mediated Decarboxylative/Desilylative C‐H Activation/Annulation Reaction: An Efficient Approach to Natural Alkaloids and New Structural Analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kang Chen
- Sichuan University West China School of Pharmacy Medicinal chemistry CHINA
| | - Shan Lv
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Ruizhi Lai
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Zhongzhen Yang
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Li Hai
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Ruifang Nie
- Shandong Provincial Hospital affiliated to Shandong First Medical University Pharmacy CHINA
| | - Yong Wu
- Sichuan University West China School of Pharmacy NO. 17, Sec 3, Renmin Road S 610041 Chengdu CHINA
| |
Collapse
|
17
|
Shao NQ, Wang DH. A Mechanism Study for Self-Cleaving Chlorotetrafluoroethylsulfinyl (-SOCF 2CF 2Cl)-Directed Pd(II)-Catalyzed C-H Activation. J Org Chem 2021; 86:16511-16517. [PMID: 34784221 DOI: 10.1021/acs.joc.1c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mechanism study for Pd(II)-catalyzed C(sp3)-H activation using a self-cleaving chlorotetrafluoroethylsulfinyl (-SOCF2CF2Cl) auxiliary as a directing group is reported. Mechanistic studies reveal that (1) the auxiliary group is crucial for C(sp3)-H activation, (2) the reaction undergoes a C(sp3)-H olefination-Michael addition-removal of the auxiliary sequence, (3) the removal of the auxiliary (SORf) is most likely the alcoholic solvolysis of the -SOCF2CF2Cl group on the N-tri-substituted sulfonamides, and (4) the C(sp3)-H cleavage is involved in the rate-determining step.
Collapse
Affiliation(s)
- Nan-Qi Shao
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Rd., Shanghai 200032, China
| | - Dong-Hui Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Rd., Shanghai 200032, China.,Department of Pharmacy, Nanjing University of Chinese Medicines, 138 Xianlin Ave., Nanjing 210023, China
| |
Collapse
|
18
|
Zhai H, Liu M, Wang C, Qiu S, Wei J, Yang H, Wu Y. Cobalt-Catalyzed 2-(1-Methylhydrazinyl)pyridine-Assisted C-H Alkylation/Annulation: Mechanistic Insights and Rapid Access to Cyclopenta[ c]isoquinolinone Derivatives. J Org Chem 2021; 86:14915-14927. [PMID: 34570982 DOI: 10.1021/acs.joc.1c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed cobalt-catalyzed, bidentate 2-(1-methylhydrazinyl)pyridine (MHP)-directed C(sp2)-H alkylation/annulation of benzoic hydrazides with various alkenes. Notably, diverse cyclopenta[c]isoquinolinones and dihydroisoquinolinones were obtained via this functional group-tolerant protocol. The reaction can be performed on a gram scale while maintaining an excellent yield, and the directing group can be removed efficiently under mild conditions. Furthermore, density-functional theory (DFT) calculations provide an incisive understanding of the observed regioselectivities for different olefins.
Collapse
Affiliation(s)
- Hongbin Zhai
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Miao Liu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chao Wang
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shuxian Qiu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Department of Chemistry, Guangdong University of Education, Guangzhou 510303, China
| | - Jian Wei
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongjian Yang
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yundong Wu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
19
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
20
|
Xu X, Feng H, Van der Eycken EV. Microwave-Assisted Palladium-Catalyzed Reductive Cyclization/Ring-Opening/Aromatization Cascade of Oxazolidines to Isoquinolines. Org Lett 2021; 23:6578-6582. [PMID: 34379418 DOI: 10.1021/acs.orglett.1c02416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient palladium-catalyzed reaction of N-propargyl oxazolidines for the construction of 4-substituted isoquinolines under microwave irradiation is developed. This transformation proceeds through a sequential palladium-catalyzed reductive cyclization/ring-opening/aromatization cascade via C-O and C-N bond cleavages of the oxazolidine ring. The practical value of this method has also been explored by conducting a millimole-scale reaction, as well as by transforming the isoquinoline into a key intermediate for the synthesis of a lamellarin analogue.
Collapse
Affiliation(s)
- Xianjun Xu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow 117198, Russia
| |
Collapse
|
21
|
Cizikovs A, Lukasevics L, Grigorjeva L. Cobalt-catalyzed C–H bond functionalization using traceless directing group. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Zhou Y, Hua R. Synthesis of 1-Benzyl-, 1-Alkoxyl-, and 1-Aminoisoquinolines via Rhodium(III)-Catalyzed Aryl C-H Activation and Alkyne Annulation. J Org Chem 2021; 86:8862-8872. [PMID: 34164989 DOI: 10.1021/acs.joc.1c00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-pot syntheses of 1-benzyl-, 1-alkoxyl-, and 1-alkylamino- isoquinolines through automatic directing group (DGauto)-assisted, rhodium(III)-catalyzed aryl C-H activation and annulation with internal alkynes were developed. The reactions affording 1-benzylisoquinolines involve a cascade oximation of diarylacetylenes with hydroxylamine, forming aryl benzyl ketone oxime, and oxime-assisted rhodium(III)-catalyzed aryl C-H activation and followed annulation with another molecule of diarylacetylene in a one-pot manner. The formation of 1-alkoxyl/amino isoquinolines includes the addition of nucleophilic alcohols or amines to aryl nitriles, imine-assisted rhodium-catalyzed aryl C-H activation, and subsequent alkyne annulation.
Collapse
Affiliation(s)
- Yiming Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
25
|
Lukasevics L, Cizikovs A, Grigorjeva L. Cobalt-Catalyzed C(sp 2)-H Carbonylation of Amino Acids Using Picolinamide as a Traceless Directing Group. Org Lett 2021; 23:2748-2753. [PMID: 33724856 DOI: 10.1021/acs.orglett.1c00660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report an efficient protocol for the C(sp2)-H carbonylation of amino acid derivatives based on an inexpensive cobalt(II) salt catalyst. Carbonylation was accomplished using picolinamide as a traceless directing group, CO (1 atm) as the carbonyl source, and Co(dpm)2 as the catalyst. A broad range of phenylalanine derivatives bearing diverse functional groups were tolerated. Moreover, the method can be successfully applied for the C(sp2)-H carbonylation of short peptides thereby allowing access for peptide late-stage carbonylation.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| |
Collapse
|
26
|
Cobalt-catalyzed C H activation of N-carbamoyl indoles or benzamides with maleimides: Synthesis of imidazo[1,5-a]indole- or isoindolone-incorporated spirosuccinimides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Hong C, Yu S, Liu Z, Zhang Y. Rhodium(iii)-catalyzed annulation of enamides with sulfoxonium ylides toward isoquinolines. RSC Adv 2021; 11:11490-11494. [PMID: 35423634 PMCID: PMC8698508 DOI: 10.1039/d1ra01063h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
An efficient rhodium(iii)-catalyzed C-H activation followed by intermolecular annulation between enamides and sulfoxonium ylides has been developed. The transformation proceeds smoothly with a broad range of substrates, affording a series of isoquinoline derivatives in moderate to good yields under additive-free conditions.
Collapse
Affiliation(s)
- Chao Hong
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Shuling Yu
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
28
|
Das A, Chatani N. Rh(i)- and Rh(ii)-catalyzed C-H alkylation of benzylamines with alkenes and its application in flow chemistry. Chem Sci 2021; 12:3202-3209. [PMID: 34164088 PMCID: PMC8179371 DOI: 10.1039/d0sc05813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rh-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported. Both Rh(i) and Rh(ii) complexes can be used as active catalysts for this transformation. In addition, a flow set up was designed to successfully mimic this process under flow conditions. Several examples are presented under flow conditions and it was confirmed that a flow process is advantageous over a batch process. Deuterium labelling experiments were performed to elucidate the mechanism of the reaction, and the results indicated a possible carbene mechanism for this C–H alkylation process. Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported under both batch and flow.![]()
Collapse
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
29
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
30
|
Singh P, Arulananda Babu S, Aggarwal Y, Patel P. Pd(II)‐catalyzed, Picolinamide‐aided sp
2
γ−C−H Functionalization of Phenylglycinol: Access to γ−C−H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prabhakar Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Yashika Aggarwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Pooja Patel
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
31
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
32
|
Shao NQ, Chen YH, Li C, Wang DH. Synthesis of γ-Lactams via Pd(II)-Catalyzed C(sp 3)-H Olefination Using a Self-Cleaving Polyfluoroethylsulfinyl Directing Group. Org Lett 2020; 22:7141-7146. [PMID: 32875802 DOI: 10.1021/acs.orglett.0c00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A monodentate directing group, 2-chlorotetrafluoroethylsulfinylmide (-NHSOCF2CF2Cl), for inert C(sp3)-H bond activation is reported. This directing group shows efficient ability in Pd(II)-catalyzed C(sp3)-H olefination. The desired olefination products undergo subsequent Michael addition and in situ expulsion of the auxiliary to provide the free NH γ-lactam products. Preliminary mechanistic studies reveal that the auxiliary group is crucial for C(sp3)-H activation.
Collapse
Affiliation(s)
- Nan-Qi Shao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Rd., Shanghai 200032, China
| | - Yu-Hao Chen
- School of Biotechnology & Health Sciences, Wuyi University, 22 Dongcheng Vill., Jiangmen, Guangdong 529020, China
| | - Chen Li
- School of Biotechnology & Health Sciences, Wuyi University, 22 Dongcheng Vill., Jiangmen, Guangdong 529020, China
| | - Dong-Hui Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Rd., Shanghai 200032, China
| |
Collapse
|
33
|
Dey A, Volla CMR. Traceless Bidentate Directing Group Assisted Cobalt-Catalyzed sp2-C–H Activation and [4 + 2]-Annulation Reaction with 1,3-Diynes. Org Lett 2020; 22:7480-7485. [DOI: 10.1021/acs.orglett.0c02664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
34
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
35
|
Chen YH, Shao NQ, Li C, Wang DH. Synthesis of N-H-Free 1,4-Dihydroisoquinoline-3(2 H)-ones via Pd-Catalyzed C-H Olefination Using Polyfluorosulfinyl as the Auxiliary Group. Org Lett 2020; 22:5880-5884. [PMID: 32790423 DOI: 10.1021/acs.orglett.0c01979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Pd(II)-catalyzed olefination of aryl C-H bonds with a self-cleaving 2-chlorotretafluoroethylsulfinyl (-SOCF2CF2Cl) auxiliary was developed. In the reaction mixture, the olefination products underwent in situ Michael addition and the subsequent expulsion of the auxiliary to provide the N-H-free 1,4-dihydroisoquinoline-3(2H)-one products. Mechanistic studies reveal that the auxiliary group is crucial for C-H activation, and Na2CO3 and an alcoholic solvent play key roles in facilitating the cleavage of the polyfluoroalkylsulfinyl auxiliary.
Collapse
Affiliation(s)
- Yu-Hao Chen
- School of Biotech. & Health Sciences, Wuyi University, 22 Dongcheng Vill., Jiangmen, Guangdong 529020, China
| | - Nan-Qi Shao
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Chen Li
- School of Biotech. & Health Sciences, Wuyi University, 22 Dongcheng Vill., Jiangmen, Guangdong 529020, China
| | - Dong-Hui Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
37
|
Han Z, Zhang Z, Li W, Du Z, Tao B, Da C, Jiao Z, Chen H, Li Y. Ruthenium‐Catalyzed Double C(sp
2
)−H Functionalizations of Fumaramides with Alkynes for the Divergent Synthesis of Pyridones and Naphthyridinediones. ChemCatChem 2020. [DOI: 10.1002/cctc.201902160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhi‐Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province Department of Tumor Center Lanzhou University Second Hospital Lanzhou 730030 P.R. China
| | - Ze‐Xuan Zhang
- School of Life Sciences State Key Laboratory of Applied Organic Chemistry and Key Lab of Preclinical Study for New Drugs of Gansu Province Lanzhou University Lanzhou 730000 China
| | - Wei‐Ping Li
- School of Life Sciences State Key Laboratory of Applied Organic Chemistry and Key Lab of Preclinical Study for New Drugs of Gansu Province Lanzhou University Lanzhou 730000 China
- Gansu Chemical Industry Research Institute Co. LTD Lanzhou 730000 P.R. China
| | - Zhi‐Hong Du
- School of Life Sciences State Key Laboratory of Applied Organic Chemistry and Key Lab of Preclinical Study for New Drugs of Gansu Province Lanzhou University Lanzhou 730000 China
| | - Bao‐Xiu Tao
- School of Life Sciences State Key Laboratory of Applied Organic Chemistry and Key Lab of Preclinical Study for New Drugs of Gansu Province Lanzhou University Lanzhou 730000 China
| | - Chao‐Shan Da
- School of Life Sciences State Key Laboratory of Applied Organic Chemistry and Key Lab of Preclinical Study for New Drugs of Gansu Province Lanzhou University Lanzhou 730000 China
| | - Zuo‐Yi Jiao
- The Key Laboratory of the Digestive System Tumors of Gansu Province Department of Tumor Center Lanzhou University Second Hospital Lanzhou 730030 P.R. China
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province Department of Tumor Center Lanzhou University Second Hospital Lanzhou 730030 P.R. China
| | - Yumin Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province Department of Tumor Center Lanzhou University Second Hospital Lanzhou 730030 P.R. China
| |
Collapse
|
38
|
Bolsakova J, Lukasevics L, Grigorjeva L. Cobalt-Catalyzed, Directed C-H Functionalization/Annulation of Phenylglycinol Derivatives with Alkynes. J Org Chem 2020; 85:4482-4499. [PMID: 32118423 DOI: 10.1021/acs.joc.0c00207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new method for cobalt-catalyzed C(sp2)-H functionalization of phenylglycinol derivatives with terminal and internal alkynes directed by picolinamide auxiliary has been developed. This method offers an efficient and highly regioselective route for the synthesis of 1-hydroxymethyltetrahydroisoquinolines. The reaction employs commercially available Co(II) catalyst in the presence of Mn(III) cooxidant and oxygen as a terminal oxidant and proceeds with full preservation of original stereochemistry.
Collapse
Affiliation(s)
| | - Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
39
|
Lukasevics L, Cizikovs A, Grigorjeva L. Synthesis of 3-Hydroxymethyl Isoindolinones via Cobalt-Catalyzed C(sp 2)-H Carbonylation of Phenylglycinol Derivatives. Org Lett 2020; 22:2720-2723. [PMID: 32181664 DOI: 10.1021/acs.orglett.0c00672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient method for the synthesis of 3-hydroxymethyl isoindolinones via cobalt-catalyzed C(sp2)-H carbonylation of phenylglycinol derivatives using picolinamide as a traceless directing group is demonstrated. The reaction proceeds in the presence of a commercially available cobalt(II) tetramethylheptanedionate catalyst and employs DIAD as a "CO" surrogate. This synthetic route offers a broad substrate scope, excellent regioselectivity, and full preservation of the original stereochemistry. Besides, the developed method provides a pathway for accessing valuable enantiopure 3-substituted isoindolinone derivatives.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
40
|
Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Transformation of Alkene-Tethered Oxime Ethers to Nitriles by a Traceless Directing Group Strategy. J Org Chem 2020; 85:2654-2665. [PMID: 31876416 DOI: 10.1021/acs.joc.9b02705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nickel-catalyzed transformation of alkene-tethered oxime ethers to nitriles using a traceless directing group strategy has been developed. A series of alkene-tethered oxime ethers derived from benzaldehyde and cinnamyl aldehyde derivatives were converted into the corresponding benzonitriles and cinnamonitriles in 46-98% yields using the nickel catalyst system. Control experiments showed that the alkene group tethered to an oxygen atom on the oximes via one methylene unit plays a key role as a traceless directing group during the catalysis.
Collapse
Affiliation(s)
- Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| |
Collapse
|
41
|
Liu M, Niu JL, Yang D, Song MP. Development of a Traceless Directing Group: Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations to Access Isoquinolinones. J Org Chem 2020; 85:4067-4078. [DOI: 10.1021/acs.joc.9b03073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minghui Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
42
|
Du K, Yao T. The C-H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature. RSC Adv 2020; 10:3203-3211. [PMID: 35497718 PMCID: PMC9048982 DOI: 10.1039/c9ra09736h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
In this study, controlled mono and di-olefination of arenes was first realized at room temperature via the C-H bond activation in ionic liquids, probably due to the positive effects of ionic liquids. It is an energy-saving routes in industrial production without the need for heating equipment. Different catalysts were screened, and it was found that [Ru(p-cymene)Cl2]2 generated mono-olefinated products predominantly while [Cp*RhCl2]2 selectively gave di-olefinated products. These catalysts ([BMIM]NTf2 and [BMIM]PF6) as green and recyclable reaction media are highly efficient under mild conditions. This reaction process can avoid any volatile and environmentally toxic organic solvents, and is much safer without the need for pressure-tight equipment. A wide substrate scope with good yields and satisfactory selectivity was achieved. The reactions can be scaled up to gram-scale. Furthermore, an expensive rhodium/ruthenium catalytic system was recycled for at least 6 times with consistently high catalytic activity, which was economical and environmental friendly from an industrial point of view. According to the mechanistic study, the C-H bond cleavage was probably achieved via the concerted metalation-deprotonation. This technique can be applied in the synthesis of various valuable unsaturated aromatic compounds and shows a great potential for industrial production.
Collapse
Affiliation(s)
- Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Tian Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
43
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 606] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
44
|
Kwak SH, Daugulis O. N-Iminopyridinium ylide-directed, cobalt-catalysed coupling of sp 2 C-H bonds with alkynes. Chem Commun (Camb) 2020; 56:11070-11073. [PMID: 32812560 DOI: 10.1039/d0cc05294a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Iminopyridinium ylides are competent monodentate directing groups for cobalt-catalysed annulation of sp2 C-H bonds with internal alkynes. The pyridine moiety in the ylide serves as an internal oxidant and is cleaved during the reaction. The annulation reactions possess excellent compatibility with heterocyclic substrates, tolerating furan, thiophene, pyridine, pyrrole, pyrazole, and indole functionalities.
Collapse
Affiliation(s)
- Se Hun Kwak
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
| |
Collapse
|
45
|
Wang Y, Li B, Wang B. RhIII-Catalyzed Synthesis of Cyclopenta[b]carbazoles via Cascade C–H/C–C Bond Cleavage and Cyclization Reactions: Using Amide as a Traceless Directing Group. Org Lett 2019; 22:83-87. [DOI: 10.1021/acs.orglett.9b03969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
46
|
Muniraj N, Kumar A, Prabhu KR. Cobalt‐Catalyzed Regioselective [4+2] Annulation/Lactonization of Benzamides with 4‐Hydroxy‐2‐Alkynoates under Aerobic Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nachimuthu Muniraj
- Department of Organic chemistryIndian Institute of Science Bangalore 560 012, Karnataka India
| | - Anil Kumar
- Department of Organic chemistryIndian Institute of Science Bangalore 560 012, Karnataka India
| | | |
Collapse
|
47
|
Prasad B, Phanindrudu M, Tiwari DK, Kamal A. Transition-Metal-Free One-Pot Tandem Synthesis of 3-Ketoisoquinolines from Aldehydes and Phenacyl Azides. J Org Chem 2019; 84:12334-12343. [PMID: 31502837 DOI: 10.1021/acs.joc.9b01534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and transition-metal-free strategy for the synthesis of 3-keto-isoquinolines in one pot has been developed from the easily accessible 2-(formylphenyl)acrylates and phenacyl azides. Various substituted aldehydes and phenacyl azides were successfully employed in this transformation to furnish a variety 3-keto-isoquinolines in very good yields. A number of controlled experiments were conducted to postulate the reaction mechanism. Secondary functionalizations of 2-keto-isoquinolins were also performed to showcase the synthetic utility.
Collapse
Affiliation(s)
- Budaganaboyina Prasad
- Division of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Mandalaparthi Phanindrudu
- Division of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research , Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus , Raebareli Road , Lucknow 226014 , India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , 110 062 New Delhi , India
| |
Collapse
|
48
|
Lv N, Chen Z, Liu Y, Liu Z, Zhang Y. Rhodium‐Catalyzed Cascade Annulation of Benzimidates and Nitroalkenes for the Synthesis of Difunctionalized Indenes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ningning Lv
- Department of Chemistry, ZJU-NHU United R&D Center Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Yue Liu
- Department of Chemistry, ZJU-NHU United R&D Center Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhanxiang Liu
- Department of Chemistry, ZJU-NHU United R&D Center Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuhong Zhang
- Department of Chemistry, ZJU-NHU United R&D Center Zhejiang University Hangzhou 310027 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
49
|
Zhang G, Fan Q, Zhao Y, Ding C. Copper-Promoted Oxidative Intramolecular C-H Amination of Hydrazones to Synthesize 1H
-Indazoles and 1H
-Pyrazoles Using a Cleavable Directing Group. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Qiankun Fan
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Yiyong Zhao
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Chengrong Ding
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
50
|
Huang S, Li H, Sun X, Xu L, Wang L, Cui X. Rh(III)-Catalyzed Sequential C-H Amination/Annulation Cascade Reactions: Synthesis of Multisubstituted Benzimidazoles. Org Lett 2019; 21:5570-5574. [PMID: 31251630 DOI: 10.1021/acs.orglett.9b01902] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient and practical method to construct benzimidazoles via Rh(III)-catalyzed sequential C-H amination and annulation cascade reaction has been developed. The cascade reaction displays high step, atom, and redox economy, is compatible with the air, and has good functional group tolerance and high efficiency. The titled products can be easily further converted into imidazo[4,5-c]acridines, which were observed unique fluorescent properties.
Collapse
Affiliation(s)
- Siqi Huang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Huan Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Xiangying Sun
- School of Material Science , Huaqiao University , Xiamen 361021 , PR China
| | - Linhua Xu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Lianhui Wang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| |
Collapse
|