1
|
Krstenansky JL. Simplified Nomenclature and Projection Diagrams of Chiral Cubane Analogs. ACS OMEGA 2024; 9:38629-38632. [PMID: 39310194 PMCID: PMC11411652 DOI: 10.1021/acsomega.4c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
A simplified nomenclature for chiral cubane analogs is proposed where analogs with a clockwise systematic continuous numbering of the cubane core are designated as (C)-, and analogs with an anticlockwise continuous numbering of the cubane core are designated as (A)-. This method is accurate, allows for the rapid conversion of the chemical name to a structure, and it eliminates the need to designate the stereochemistry of each of the 8 carbons of cubane.
Collapse
Affiliation(s)
- John L. Krstenansky
- Keck Graduate Institute, School of Pharmacy, 535 Watson Drive, Claremont, California 91711, United States
| |
Collapse
|
2
|
Křížková A, Bastien G, Rončević I, Císařová I, Rybáček J, Kašička V, Kaleta J. Chlorinated Cubane-1,4-dicarboxylic Acids. J Org Chem 2024; 89:11100-11108. [PMID: 36724049 PMCID: PMC11334191 DOI: 10.1021/acs.joc.2c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 02/02/2023]
Abstract
Herein, we report radical chlorination of cubane-1,4-dicarboxylic acid leading preferentially to one monochlorinated cubane dicarboxylate (ca. 70%) that is accompanied by four dichlorinated derivatives (ca. 20% in total). The exact positions of the chlorine atoms have been confirmed by X-ray diffraction of the corresponding single crystals. The acidity constants of all dicarboxylic acids in water were determined by capillary electrophoresis (3.17 ± 0.04 and 4.09 ± 0.05 for monochlorinated and ca. 2.71 ± 0.05 and 3.75 ± 0.05 for dichlorinated cubanes). All chlorinated derivatives as well as the parent diacid showed high thermal stability (decomposition above 250 °C) as documented by differential scanning calorimetry. The probable reaction pathways leading to individual isomers were proposed, and the energies of individual transition states and intermediates were obtained using density functional theory calculations (B3LYP-D3BJ/6-311+G(d,p)). The relative strain energies for all newly prepared derivatives as well as for hypothetical hexahalogenated (fluorinated, chlorinated, brominated, and iodinated) derivatives of cubane-1,4-dicarboxylic acids were predicted using wavefunction theory methods. The hexafluorinated derivative was identified as the most strained compound (57.5 kcal/mol), and the relative strain decreased as the size of halogen atoms increased (23.7 for hexachloro, 16.7 for hexabromo, and 4.0 kcal/mol for the hexaiodo derivative).
Collapse
Affiliation(s)
- Adéla Křížková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Guillaume Bastien
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Igor Rončević
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
| | - Jiří Rybáček
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Václav Kašička
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
3
|
Jelínková K, Závodná A, Kaleta J, Janovský P, Zatloukal F, Nečas M, Prucková Z, Dastychová L, Rouchal M, Vícha R. Two Squares in a Barrel: An Axially Disubstituted Conformationally Rigid Aliphatic Binding Motif for Cucurbit[6]uril. J Org Chem 2023; 88:15615-15625. [PMID: 37882436 PMCID: PMC10661032 DOI: 10.1021/acs.joc.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/β-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and β-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.
Collapse
Affiliation(s)
- Kristýna Jelínková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Aneta Závodná
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Petr Janovský
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Filip Zatloukal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 602 00, Czech Republic
| | - Zdeňka Prucková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Lenka Dastychová
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Michal Rouchal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Robert Vícha
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| |
Collapse
|
4
|
Advances in nonclassical phenyl bioisosteres for drug structural optimization. Future Med Chem 2022; 14:1681-1692. [PMID: 36317661 DOI: 10.4155/fmc-2022-0188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl group is the most prevalent ring system and plays an essential role as a pharmacophore or scaffold in marketed drugs. However, the indiscriminate employment of phenyl is also a major cause of poor physicochemical properties of active molecules. Nonclassical phenyl bioisosteres (NPBs) have emerged as effective replacements for phenyl in structural optimization due to their unique steric structures and physicochemical properties. Herein, the effects of widely reported NPBs on physicochemical properties and biological activities, including bicyclo[1.1.1]pentane (BCP), bicyclo[2.1.1]hexanes (BCH), bicyclo[2.2.2]octane (BCO), cubane (CUB) and closo-carboborane, are reviewed. Issues that require consideration while using NPBs and practical solutions to problems frequently encountered in structural optimization using NPBs are also discussed.
Collapse
|
5
|
Tomeček J, Čablová A, Hromádková A, Novotný J, Marek R, Durník I, Kulhánek P, Prucková Z, Rouchal M, Dastychová L, Vícha R. Modes of Micromolar Host-Guest Binding of β-Cyclodextrin Complexes Revealed by NMR Spectroscopy in Salt Water. J Org Chem 2021; 86:4483-4496. [PMID: 33648337 DOI: 10.1021/acs.joc.0c02917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multitopic supramolecular guests with finely tuned affinities toward widely explored cucurbit[n]urils (CBs) and cyclodextrins (CDs) have been recently designed and tested as functional components of advanced supramolecular systems. We employed various spacers between the adamantane cage and a cationic moiety as a tool for tuning the binding strength toward CB7 to prepare a set of model guests with KCB7 and Kβ-CD values of (0.6-5.0) × 1010 M-1 and (0.6-2.6) × 106 M-1, respectively. These accessible adamantylphenyl-based binding motifs open a way toward supramolecular components with an outstanding affinity toward β-cyclodextrin. 1H NMR experiments performed in 30% CaCl2/D2O at 273 K along with molecular dynamics simulations allowed us to identify two arrangements of the guest@β-CD complexes. The approach, joining experimental and theoretical methods, provided a better understanding of the structure of cyclodextrin complexes and related molecular recognition, which is highly important for the rational design of drug delivery systems, molecular sensors and switches.
Collapse
Affiliation(s)
- Josef Tomeček
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Andrea Čablová
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Aneta Hromádková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Lenka Dastychová
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| |
Collapse
|
6
|
Jelínková K, Kovačević J, Wrzecionková E, Prucková Z, Rouchal M, Dastychová L, Vícha R. Binding study on 1-adamantylalkyl(benz)imidazolium salts to cyclodextrins and cucurbit[n]urils. NEW J CHEM 2020. [DOI: 10.1039/d0nj00738b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adamantane-based imidazolium salts with flexible linkers between the adamantane cage and imidazolium core were prepared. Their supramolecular behaviour towards the natural cyclodextrins α-CD, β-CD and γ-CD and cucurbit[n]urils (n = 7, 8) was studied.
Collapse
Affiliation(s)
- Kristýna Jelínková
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| | - Jelica Kovačević
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| | - Eva Wrzecionková
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| | - Zdeňka Prucková
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| | - Michal Rouchal
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| | - Lenka Dastychová
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| | - Robert Vícha
- Department of Chemistry
- Faculty of Technology
- Tomas Bata University in Zlín
- 760 01 Zlín
- Czech Republic
| |
Collapse
|
7
|
Lambert H, Mohan N, Lee TC. Ultrahigh binding affinity of a hydrocarbon guest inside cucurbit[7]uril enhanced by strong host–guest charge matching. Phys Chem Chem Phys 2019; 21:14521-14529. [DOI: 10.1039/c9cp01762c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrostatic interactions as a strong driving force for neutral apolar host–guest complexation is revealed via a large-scale computational approach.
Collapse
Affiliation(s)
- Hugues Lambert
- Department of Chemistry
- Christopher Ingold Building
- University College London (UCL)
- UK
- Institute for Materials Discovery
| | - Neetha Mohan
- Department of Chemistry
- Christopher Ingold Building
- University College London (UCL)
- UK
- Institute for Materials Discovery
| | - Tung-Chun Lee
- Department of Chemistry
- Christopher Ingold Building
- University College London (UCL)
- UK
- Institute for Materials Discovery
| |
Collapse
|
8
|
Venkataramanan NS, Suvitha A, Kawazoe Y. Unravelling the nature of binding of cubane and substituted cubanes within cucurbiturils: A DFT and NCI study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Vícha R, Jelínková K, Rouchal M. Cucurbit[n
]urils-related Multitopic Supramolecular Components: Design, Properties, and Perspectives. Isr J Chem 2017. [DOI: 10.1002/ijch.201700094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Robert Vícha
- Department of Chemistry; Tomas Bata University in Zlín; Faculty of Technology; Vavrečkova 275 760 01 Zlín Czech Republic
| | - Kristýna Jelínková
- Department of Chemistry; Tomas Bata University in Zlín; Faculty of Technology; Vavrečkova 275 760 01 Zlín Czech Republic
| | - Michal Rouchal
- Department of Chemistry; Tomas Bata University in Zlín; Faculty of Technology; Vavrečkova 275 760 01 Zlín Czech Republic
| |
Collapse
|