1
|
Ma X, Ye F, Zhang X, Li Z, Ding Y, Lu C, Shen Y. Proansamycin B derivatives from the post-PKS modification gene deletion mutant of Amycolatopsis mediterranei S699. J Antibiot (Tokyo) 2024; 77:278-287. [PMID: 38409261 DOI: 10.1038/s41429-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Ten new proansamycin B congeners (1-10) together with one known (11) were isolated and characterized on the basis of 1D and 2D NMR spectroscopic and HRESIMS data from the Amycolatopsis mediterranei S699 ΔPM::rifR+rif-orf19 mutant. Compounds 8 and 9 featured with six-membered ring and five-membered ring hemiketal, respectively. Compounds 1, 2, and 9 displayed antibacterial activity against MRSA (methicillin-resistant Staphylococcus aureus), with the MIC (minimal inhibitory concentration) values of 64, 8, and 128 µg/mL, respectively. Compound 1 showed significant cytotoxicity against MDA-MB-231, HepG2 and Panc-1 cell lines with IC50 (half maximal inhibitory concentration) values of 2.3 ± 0.2, 2.5 ± 0.3 and 3.8 ± 0.5 μM, respectively.
Collapse
Affiliation(s)
- Xinyu Ma
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhan Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yanjiao Ding
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Zhao S, Lu C, Wang H, Li Y, Shen Y. Double Bond Geometric Isomers of Pentaketide Ansamycins from Streptomyces sp. S008. Org Lett 2023; 25:6954-6958. [PMID: 37708355 DOI: 10.1021/acs.orglett.3c02364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Six new pentaketide ansamycins, namely, shengliangmycins A-F (1-6, respectively), were obtained from the fermentation products of Streptomyces sp. S008OEslmR2 that was derived by constitutive expression of LAL regulator gene slmR2. The structures of 1-6 were determined through comprehensive spectroscopic analysis and single-crystal X-ray diffraction. Compound 1 has a cis-C6═C7 bond, which is different from that of compounds 2-5. Compounds 3-6 feature a morpholinone structural moiety, whereas 5 is characterized by a pyrazoline ring, which is rare in natural products.
Collapse
Affiliation(s)
- Shengliang Zhao
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Ye F, Zhao X, Shi Y, Hu Y, Ding Y, Lu C, Li Y, Wang H, Lu G, Shen Y. Deciphering the Timing of Naphthalenic Ring Formation in the Biosynthesis of 8-Deoxyrifamycins. Org Lett 2023; 25:6474-6478. [PMID: 37634191 DOI: 10.1021/acs.orglett.3c02039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Although the biosynthesis of rifamycin has been studied for three decades, the biosynthetic formation of the naphthalenic ring remains unclear. In this study, by deletion of all post-PKS modification genes, we identified macrolactam precursors released from rif PKS. Isolated prorifamycins (M3 and M4) have a benzenic chromophore and exist in two sets of macrocyclic atropisomers. The transformation from prorifamycins to benzenoid (5) and naphthalenoid (6) was suggested to be a non-enzymatic process, which is an off-PKS assembly.
Collapse
Affiliation(s)
- Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Bobek J, Filipová E, Bergman N, Čihák M, Petříček M, Lara AC, Kristufek V, Megyes M, Wurzer T, Chroňáková A, Petříčková K. Polyenic Antibiotics and Other Antifungal Compounds Produced by Hemolytic Streptomyces Species. Int J Mol Sci 2022; 23:15045. [PMID: 36499372 PMCID: PMC9740855 DOI: 10.3390/ijms232315045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 β-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Eliška Filipová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
| | - Natalie Bergman
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Matouš Čihák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Miroslav Petříček
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
| | - Ana Catalina Lara
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vaclav Kristufek
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Theresa Wurzer
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
| |
Collapse
|
5
|
Han T, Zhang K, Tang G, Zhou Q. Characterizing
Post‐PKS
Modifications of
16‐Demethyl
‐rifamycin Revealed Two Dehydrogenases Diverting the Aromatization Mode of Naphthalenic Ring in Ansamycin Biosynthesis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ting‐Yan Han
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kai Zhang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sublane Xiangshan Hangzhou 310024 China
| | - Qiang Zhou
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
6
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
7
|
Skrzypczak N, Przybylski P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins. Nat Prod Rep 2022; 39:1653-1677. [PMID: 35244668 DOI: 10.1039/d2np00002d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2011 to 2021Structural division of natural naphthalenoid ansamycins, regarding the type of the core and length of the ansa chain, and their biosynthetic pathways in microorganisms are discussed. The great biosynthetic plasticity of natural naphthalenoid ansamycins is reflected in their structural variety due to the alterations within ansa bridge or naphthalenoid core portions. A comparison between the biological potency of natural and semisynthetic naphthalenoid ansamycins was performed and discussed in relation to the molecular targets in cells. The antibacterial potency of naphthalenoid ansamycins seems to be dependent on the ansa chain length and conformational flexibility - the higher flexibility of the ansa chain the better biological outcome is noted.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
8
|
Shi P, Li Y, Zhu J, Shen Y, Wang H. Targeted Discovery of the Polyene Macrolide Hexacosalactone A from Streptomyces by Reporter-Guided Selection of Fermentation Media. JOURNAL OF NATURAL PRODUCTS 2021; 84:1924-1929. [PMID: 34170140 DOI: 10.1021/acs.jnatprod.1c00144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New approaches are still needed to fully explore the biosynthetic potential of microbes. We recently devised a melC reporter-guided fermentation media screening approach for targeted activation of cryptic gene clusters. Using this approach, we successfully activated the expression of the hcl gene cluster in Streptomyces sp. LZ35 and discovered a novel polyene macrolide hexacosalactone A (1).
Collapse
Affiliation(s)
- Peng Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
9
|
Shi H, Li Y, Zhu J, Wang H, Shen Y. Discovery of Germicidin Glucuronides from Streptomyces sp. LZ35. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wei F, Wang Z, Lu C, Li Y, Zhu J, Wang H, Shen Y. Targeted Discovery of Pentaketide Ansamycin Aminoansamycins A–G. Org Lett 2019; 21:7818-7822. [DOI: 10.1021/acs.orglett.9b02804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zishen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
11
|
da Silva AB, Silveira ER, Wilke DV, Ferreira EG, Costa-Lotufo LV, Torres MCM, Ayala AP, Costa WS, Canuto KM, de Araújo-Nobre AR, Araújo AJ, Filho JDBM, Pessoa ODL. Antibacterial Salinaphthoquinones from a Strain of the Bacterium Salinispora arenicola Recovered from the Marine Sediments of St. Peter and St. Paul Archipelago, Brazil. JOURNAL OF NATURAL PRODUCTS 2019; 82:1831-1838. [PMID: 31313922 DOI: 10.1021/acs.jnatprod.9b00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Salinaphthoquinones A-E (1-5) were isolated from a marine Salininispora arenicola strain, recovered from sediments of the St. Peter and St. Paul Archipelago, Brazil. The structures of the compounds were elucidated using a combination of spectroscopic (NMR, IR, HRESIMS) data, including single-crystal X-ray diffraction analysis. A plausible biosynthetic pathway for 1-5 is proposed. Compounds 1 to 4 displayed moderate activity against Staphylococcus aureus and Enterococcus faecalis with MIC values of 125 to 16 μg/mL.
Collapse
Affiliation(s)
- Alison B da Silva
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| | - Edilberto R Silveira
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| | - Diego V Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos , Universidade Federal do Ceará , 60.430-275 , Fortaleza - CE , Brazil
| | - Elhton G Ferreira
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos , Universidade Federal do Ceará , 60.430-275 , Fortaleza - CE , Brazil
| | - Leticia V Costa-Lotufo
- Departamento de Farmacologia , Universidade de São Paulo , 05508-900 , São Paulo - SP , Brazil
| | - Maria Conceição M Torres
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física , Universidade Federal do Ceará , 60.440-970 , Fortaleza - CE , Brazil
| | - Wendell S Costa
- Departamento de Farmácia , Universidade Federal do Ceará , 60.430-170 , Fortaleza - CE , Brazil
| | - Kirley M Canuto
- Embrapa Agroindústria Tropical , 60.511-110 , Fortaleza - CE , Brazil
| | - Alyne R de Araújo-Nobre
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia , Universidade Federal do Piauí , 64.202-020 , Parnaíba - PI , Brazil
| | - Ana Jérsia Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia , Universidade Federal do Piauí , 64.202-020 , Parnaíba - PI , Brazil
| | - José Delano B Marinho Filho
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia , Universidade Federal do Piauí , 64.202-020 , Parnaíba - PI , Brazil
| | - Otilia Deusdenia L Pessoa
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| |
Collapse
|
12
|
Liu M, Shi P, Lu C, Zhong L. Isolation and Identification of Secondary Metabolites FromStreptomycessp. SP301. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19861791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Seven compounds, namely aminobenzoates A to D (1-4), naphthalenecarboxylates A and B (5-6), and glycosylatelactone A (7), were isolated from the fermentation medium of Streptomyces sp. SP301. Of these, aminobenzoates C and D (3-4), naphthalenecarboxylate B (6), and glycosylatelactone A (7) are new compounds. Aminobenzoates A to D (1-4) shared a common aromatic starter unit, para-aminobenzoic acid , and biosynthesis involving a different pathway. The structures were elucidated on the basis of 1D- and 2D-Nuclear Magnetic Resonance (NMR) spectroscopy and HR-ESIMS analysis.
Collapse
Affiliation(s)
- Mengyujie Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Peng Shi
- Key Laboratory of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, P.R. China
| | - Lihong Zhong
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, P.R. China
| |
Collapse
|
13
|
Zhang Z, Cao P, Shang NN, Yang J, Wang L, Yan Y, Huang SX. Naphthomycin-derived macrolactams with two new carbon skeletons from endophytic Streptomyces. Org Chem Front 2019. [DOI: 10.1039/c8qo01107a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cytotoxic ansamycin class of natural products with two new carbon skeletons was isolated and characterized from endophytic Streptomyces.
Collapse
Affiliation(s)
- Zhouxin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Pei Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Ning-Ning Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| |
Collapse
|
14
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
15
|
Wang J, Li W, Wang H, Lu C. Pentaketide Ansamycin Microansamycins A-I from Micromonospora sp. Reveal Diverse Post-PKS Modifications. Org Lett 2018; 20:1058-1061. [PMID: 29412682 DOI: 10.1021/acs.orglett.7b04018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overexpression of the pathway-specific positive regulator gene mas13 activated the cryptic gene cluster mas, resulting in the isolation of nine novel pentaketide ansamycins, namely, microansamycins A-I (1-9). These results not only revealed a biosynthetic gene cluster of pentaketide ansamycins for the first time but also presented an unprecedented scenario of diverse post-PKS modifications in ansamycin biosynthesis.
Collapse
Affiliation(s)
- Jianxiong Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| | - Wen Li
- State Key Laboratory of Microbial Technology, Shandong University , Jinan, Shandong 250100, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University , Jinan, Shandong 250100, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| |
Collapse
|
16
|
Liu Y, Chen X, Li Z, Xu W, Tao W, Wu J, Yang J, Deng Z, Sun Y. Functional Analysis of Cytochrome P450s Involved in Streptovaricin Biosynthesis and Generation of Anti-MRSA Analogues. ACS Chem Biol 2017; 12:2589-2597. [PMID: 28858479 DOI: 10.1021/acschembio.7b00467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The streptovaricins, chemically related to the rifamycins, are highly effective antibacterial agents, particularly against mycobacteria. Herein, a bioassay-guided investigation of Streptomyces spectabilis CCTCC M2017417 has led to the characterization of streptovaricins as potent compounds against methicillin-resistant Staphylococcus aureus (MRSA). We identified the streptovaricin biosynthetic gene cluster from S. spectabilis CCTCC M2017417 based on genomic sequencing and bioinformatic analysis. Targeted in-frame deletion of five cytochrome P450 genes (stvP1-P5) resulted in the identification of four new streptovaricin analogues and revealed the functions of these genes as follows: stvP1, stvP4, and stvP5 are responsible for the hydroxylation of C-20, Me-24, and C-28, respectively. stvP2 is possibly involved in formation of the methylenedioxy bridge, and stvP3, a conserved gene found in the biosynthetic cluster for naphthalenic ansamycins, might be related to the formation of a naphthalene ring. Biochemical verification of the hydroxylase activity of StvP1, StvP4, and StvP5 was performed, and StvP1 showed unexpected biocatalytic specificity and promiscuity. More importantly, anti-MRSA studies of streptovaricins and derivatives revealed significant structure-activity relationships (SARs): The hydroxyl group at C-28 plays a vital role in antibacterial activity. The hydroxyl group at C-20 substantially enhances activity in the absence of the methoxycarbonyl side chain at C-24, which can increase the activity regardless of the presence of a hydroxyl group at C-20. The inner lactone ring between C-21 and C-24 shows a positive effect on activity. This work provides meaningful information on the SARs of streptovaricins and demonstrates the utility of the engineering of streptovaricins to yield novel anti-MRSA molecules.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Xu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Zhengyuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Weixin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Jie Wu
- Renmin Hospital of Wuhan University, Wuhan 430060, People’s Republic of China
| | - Jian Yang
- Renmin Hospital of Wuhan University, Wuhan 430060, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| |
Collapse
|
17
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2017; 34:940-944. [PMID: 28717803 DOI: 10.1039/c7np90028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as svetamycin B from a Streptomyces species.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
18
|
Abstract
Neoansamycins D–I with unusual extender units and diverse post-PKS modifications were isolated from the Streptomyces sp. SR201nam1OE strain.
Collapse
Affiliation(s)
- Mengyujie Liu
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Ruocong Tang
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Shanren Li
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|