1
|
Quezada V, Castroagudín M, Verdugo F, Ortiz S, Zaragoza G, Nachtigall FM, Reis FAA, Castro-Alvarez A, Santos LS, Nelson R. Nickel(II)-Catalyzed Formal [3+2] Cycloadditions between Indoles and Donor-Acceptor Cyclopropanes. Molecules 2024; 29:1604. [PMID: 38611883 PMCID: PMC11013886 DOI: 10.3390/molecules29071604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
This article describes the development of a nickel-catalyzed regio- and diastereoselective formal [3+2] cycloaddition between N-substituted indoles and donor-acceptor cyclopropanes to synthesize cyclopenta[b]indoles. Optimized reaction conditions provide the desired nitrogen-containing cycloadducts in up to 93% yield and dr 8.6:1 with complete regioselectivity. The substrate scope showed high tolerance to various substituted indoles and cyclopropanes, resulting in the synthesis of six new cyclopenta[b]indoles and the isolation of five derivatives previously reported in the literature. In addition, a mechanistic proposal for the reaction was studied through online reaction monitoring by ESI-MS, allowing for the identification of the reactive intermediates in the Ni(II) catalyzed process. X-ray crystallography confirmed the structure and relative endo stereochemistry of the products. This method enables the fast and efficient construction of fused indolines from readily accessible starting materials.
Collapse
Affiliation(s)
- Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (V.Q.); (M.C.)
| | - Mariña Castroagudín
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (V.Q.); (M.C.)
| | - Felipe Verdugo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile;
| | - Sergio Ortiz
- UMR 7200 Laboratoire d’Innovation Thérapeutique, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Université de Strasbourg, 67400 Illkirch-Graffenstaden, France;
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus VIDA, 15782 Santiago de Compostela, Spain;
| | - Fabiane M. Nachtigall
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Francisco A. A. Reis
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, Universidad de Talca, Talca 3460000, Chile;
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Leonardo S. Santos
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, Universidad de Talca, Talca 3460000, Chile;
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (V.Q.); (M.C.)
| |
Collapse
|
2
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Zhu A, Sun Y, Lai J, Chen Z, Bu X, Yue YN, Ma M, Xue F. One-Pot Synthesis of 2,3-Disubstituted Indanone Derivatives in Water under Exogenous Ligand-Free and Mild Conditions. J Org Chem 2022; 87:7884-7894. [PMID: 35611883 DOI: 10.1021/acs.joc.2c00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Diverse 2,3-substituted indanones are accessed in an efficient and robust protocol by a rhodium-catalyzed tandem carborhodium/cyclization and intramolecular proton shift pathway. The reaction is compatible with a broad range of functional internal acetylenes, especially for natural and functionalized alkynes derivatives, affording the desired indanones in good to excellent yields. Remarkably, this reaction features very mild and sustainable conditions using water as the sole solvent and without exogenous ligands. Control studies support that indanone is formed through the intramolecular proton transfer process from the key intermediate indenol.
Collapse
Affiliation(s)
- Anqiao Zhu
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Sun
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jingru Lai
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyan Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road Nanjing 211816, P. R. China
| | - Xiaoli Bu
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yan-Ni Yue
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road Nanjing 211816, P. R. China
| | - Mengtao Ma
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Wang H, Ye M. Research Advance on Enantioselective Transition Metal-Catalyzed Hydroacylation Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Wu J, Xu W, Lu H, Xu P. Palladium‐Catalyzed Alkene Thioacylation: A C−S Bond Activation Approach for Accessing Indanone Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jianing Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069
| | - Wen‐Hua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069
| | - Peng‐Fei Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000
| |
Collapse
|
7
|
Das A, Thakur S, Das T. Indole‐2‐Carboxaldehyde: An Emerging Precursor for the Construction of Diversified Imperative Skeleton. ChemistrySelect 2021. [DOI: 10.1002/slct.202100695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arunima Das
- Department of Chemistry, NIT Jamshedpur Jamshedpur 831014 India
| | - Seema Thakur
- Department of Chemistry, NIT Jamshedpur Jamshedpur 831014 India
| | - Tapas Das
- Department of Chemistry, NIT Jamshedpur Jamshedpur 831014 India
| |
Collapse
|
8
|
Liu C, Yuan J, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C
3
‐Chirogenic Center. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of Chemistry Graduate School of Science Tohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
9
|
Liu C, Yuan J, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C
3
‐Chirogenic Center. Angew Chem Int Ed Engl 2021; 60:8997-9002. [DOI: 10.1002/anie.202017190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of Chemistry Graduate School of Science Tohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Nifant'ev IE, Ivchenko PV. Synthesis of Heteroarene‐Fused Cyclopentadienes and Related Compounds Suitable for Metallocene Preparation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ilya E. Nifant'ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS Leninsky pr. 22 119991 Moscow Russian Federation
- Department of Chemistry M.V. Lomonosov Moscow University Leninskie gory 1–3 119991 Moscow Russian Federation
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS Leninsky pr. 22 119991 Moscow Russian Federation
- Department of Chemistry M.V. Lomonosov Moscow University Leninskie gory 1–3 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Whyte A, Bajohr J, Torelli A, Lautens M. Enantioselective Cobalt-Catalyzed Intermolecular Hydroacylation of 1,6-Enynes. Angew Chem Int Ed Engl 2020; 59:16409-16413. [PMID: 32524694 DOI: 10.1002/anie.202006716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Abstract
We report a cobalt-catalyzed hydroacylation of 1,6-enynes with exogenous aldehydes in a domino sequence to construct enantioenriched ketones. The products were obtained in good yields with excellent regio-, diastereo-, and enantioselectivity. Furthermore, the chiral products served as valuable precursors to access complex spirocyclic scaffolds with three contiguous stereocenters. The asymmetric hydroacylation process exhibited no C-H crossover and no KIE, thus indicating that the C-H bond cleavage was not involved in the turnover-limiting step.
Collapse
Affiliation(s)
- Andrew Whyte
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan Bajohr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Alexa Torelli
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
12
|
Duan S, Zhang W, Hu Y, Xu Z, Li C. Synthesis of Cyclopenta[
b
]indoles via a Formal [3+2] Cyclization of
N
‐Sulfonyl‐1,2,3‐triazoles and Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shengguo Duan
- Department of ChemistryZhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Wan Zhang
- Department of ChemistryZhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Yuntong Hu
- Department of ChemistryZhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Ze‐Feng Xu
- Department of ChemistryZhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Chuan‐Ying Li
- Department of ChemistryZhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| |
Collapse
|
13
|
Whyte A, Bajohr J, Torelli A, Lautens M. Enantioselective Cobalt‐Catalyzed Intermolecular Hydroacylation of 1,6‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew Whyte
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jonathan Bajohr
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alexa Torelli
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
14
|
Reddy C, Shaikh JY, Bhat RG. Access to Hetero-Benzyl Scaffolds via Transient-Ligand-Enabled Direct γ-C(sp 3)-H Arylation of 3-Methylheteroarene-2-Carbaldehydes. J Org Chem 2020; 85:6924-6934. [PMID: 32348142 DOI: 10.1021/acs.joc.0c00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An efficient and straightforward method has been developed for the synthesis of β-benzyl-substituted 5-membered heterocyclic carbaldehydes via transient directing-group-enabled direct γ-C(sp3)-H arylation of 3-methylheteroarene-2-carbaldehydes. A wide range of 3-methylheteroarene carbaldehydes undergo coupling with a variety of aryl iodides, including less reactive iodo pyridine derivatives to provide a library of highly selective functionalized products in good to excellent yields. Some of these products have been successfully utilized in synthesizing useful synthetic intermediates.
Collapse
Affiliation(s)
- Chennakesava Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Javed Y Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
15
|
Bartolo ND, Read JA, Valentín EM, Woerpel KA. Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C═N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin-Anh and Chelation-Control Models. Chem Rev 2020; 120:1513-1619. [PMID: 31904936 PMCID: PMC7018623 DOI: 10.1021/acs.chemrev.9b00414] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review describes the additions of allylmagnesium reagents to carbonyl compounds and to imines, focusing on the differences in reactivity between allylmagnesium halides and other Grignard reagents. In many cases, allylmagnesium reagents either react with low stereoselectivity when other Grignard reagents react with high selectivity, or allylmagnesium reagents react with the opposite stereoselectivity. This review collects hundreds of examples, discusses the origins of stereoselectivities or the lack of stereoselectivity, and evaluates why selectivity may not occur and when it will likely occur.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, UT 84112, USA
| | - Elizabeth M. Valentín
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, Susquehanna University, 514
University Avenue, Selinsgrove, PA 17870, USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| |
Collapse
|
16
|
Design, synthesis, and molecular docking of new 5-HT reuptake inhibitors based on modified 1,2-dihydrocyclopenta[b]indol-3(4H)-one scaffold. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Zhao JJ, Zhang HH, Shen X, Yu S. Enantioselective Radical Hydroacylation of Enals with α-Ketoacids Enabled by Photoredox/Amine Cocatalysis. Org Lett 2019; 21:913-916. [DOI: 10.1021/acs.orglett.8b03840] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jia-Jia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Barbero M, Dughera S, Alberti S, Ghigo G. A simple, direct synthesis of 3-vinylindoles from the carbocation-catalysed dehydrative cross-coupling of ketones and indoles. A combined experimental and computational study. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Lee SC, Guo L, Rueping M. Nickel-catalyzed exo-selective hydroacylation/Suzuki cross-coupling reaction. Chem Commun (Camb) 2019; 55:14984-14987. [DOI: 10.1039/c9cc07558e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first nickel-catalyzed intramolecular hydroacylation/Suzuki cross coupling cascade of o-allylbenzaldehydes with a broad range of phenylboronic acid neopentyl glycol esters has been developed.
Collapse
Affiliation(s)
- Shao-Chi Lee
- Institute of Organic Chemistry
- RWTH Aachen University
- Aachen
- Germany
| | - Lin Guo
- Institute of Organic Chemistry
- RWTH Aachen University
- Aachen
- Germany
| | - Magnus Rueping
- Institute of Organic Chemistry
- RWTH Aachen University
- Aachen
- Germany
- KAUST Catalysis Center (KCC)
| |
Collapse
|
20
|
Vivekanand T, Satpathi B, Bankar SK, Ramasastry SSV. Recent metal-catalysed approaches for the synthesis of cyclopenta[ b]indoles. RSC Adv 2018; 8:18576-18588. [PMID: 35541103 PMCID: PMC9080641 DOI: 10.1039/c8ra03480j] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
The cyclopenta[b]indole scaffold is ubiquitously present in several bioactive natural products and pharmaceutically interesting compounds. Of the numerous methods known for the synthesis of cyclopenta-fused indoles, this review highlights only the metal-catalysed approaches reported from the year 2015 onwards. This review encompasses our own efforts leading to the synthesis of cyclopentannulated indoles, in addition to the seminal contributions of several other researchers.
Collapse
Affiliation(s)
- Thavaraj Vivekanand
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, S. A. S. Nagar Manauli PO Punjab 140306 India http://14.139.227.202/faculty/sastry/
| | - Bishnupada Satpathi
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, S. A. S. Nagar Manauli PO Punjab 140306 India http://14.139.227.202/faculty/sastry/
| | - Siddheshwar K Bankar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, S. A. S. Nagar Manauli PO Punjab 140306 India http://14.139.227.202/faculty/sastry/
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, S. A. S. Nagar Manauli PO Punjab 140306 India http://14.139.227.202/faculty/sastry/
| |
Collapse
|
21
|
Korenaga T, Nitatori K, Muraoka H, Ogawa S, Shimada K. Perfluorocyclopentadienyl Radical Derivative as an Organocatalyst for Oxidative Coupling of Aryl- and Thienylmagnesium Compounds under Atmospheric Oxygen. J Org Chem 2018; 83:4835-4839. [PMID: 29557173 DOI: 10.1021/acs.joc.8b00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative homocoupling reaction of Grignard reagents in the presence of atmospheric oxygen molecules proceeded in the presence of a heptafluorotolyl-substituted perfluorocyclopentadienyl radical. The turnover number (TON) was over 30 for the coupling reactions of PhMgBr to give biphenyl. The organocatalyst could couple thienylmagnesium compounds to give bithiophene derivatives in up to 94% yield. Furthermore, a gram-scale synthesis of 6,6'-dimethoxybiphenyl-2,2'-diyl-bis(phosphonic acid diethyl ester) was demonstrated. Stabilization of the phenyl radical for the inhibition of the side reaction was also considered using DFT calculations.
Collapse
Affiliation(s)
- Toshinobu Korenaga
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering , Iwate University , 4-3-5 Ueda , Morioka , Iwate 020-8551 , Japan
| | - Kaoru Nitatori
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering , Iwate University , 4-3-5 Ueda , Morioka , Iwate 020-8551 , Japan
| | - Hiroki Muraoka
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering , Iwate University , 4-3-5 Ueda , Morioka , Iwate 020-8551 , Japan
| | - Satoshi Ogawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering , Iwate University , 4-3-5 Ueda , Morioka , Iwate 020-8551 , Japan
| | - Kazuaki Shimada
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering , Iwate University , 4-3-5 Ueda , Morioka , Iwate 020-8551 , Japan
| |
Collapse
|