1
|
Ren H, Wang RA, Shi J, Song JR, Wu W, Chi Q, Zhang N. Electrochemical bromocyclization enables 3,5-diversification of heterocyclic indolines. Org Biomol Chem 2023; 21:7290-7294. [PMID: 37650516 DOI: 10.1039/d3ob00985h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Electrophilic bromocyclization reactions are widely used as key steps in the synthesis of diverse functionalized tetrahydrofuroindolines and hexahydropyrroloindolines. However, the direct dibromination variants of these reactions for the synthesis of 3,5-dibromoindolines remain undeveloped. Here, we report a protonic-acid-promoted electrooxidative protocol for the dearomative C3,C5-dibromocyclizations of tryptophol and tryptamine derivatives. This electrosynthetic approach, which enables direct selective construction of heterocyclic 3a,5a-dibromoindolines with inexpensive, non-hazardous NaBr as both the electrolyte and Br source, provides a convenient, practical method for the late-stage 3,5-diversification of heterocyclic indolines.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
2
|
Chang X, Zhang F, Zhu S, Yang Z, Feng X, Liu Y. Photoredox-catalyzed diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indole derivatives. Nat Commun 2023; 14:3876. [PMID: 37391418 PMCID: PMC10313782 DOI: 10.1038/s41467-023-39633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Prenylated and reverse-prenylated indolines are privileged scaffolds in numerous naturally occurring indole alkaloids with a broad spectrum of important biological properties. Development of straightforward and stereoselective methods to enable the synthesis of structurally diverse prenylated and reverse-prenylated indoline derivatives is highly desirable and challenging. In this context, the most direct approaches to achieve this goal generally rely on transition-metal-catalyzed dearomative allylic alkylation of electron-rich indoles. However, the electron-deficient indoles are much less explored, probably due to their diminished nucleophilicity. Herein, a photoredox-catalyzed tandem Giese radical addition/Ireland-Claisen rearrangement is disclosed. Diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indoles proceed smoothly under mild conditions. An array of tertiary α-silylamines as radical precursors is readily incorporated in 2,3-disubstituted indolines with high functional compatibility and excellent diastereoselectivity (>20:1 d.r.). The corresponding transformations of the secondary α-silylamines provide the biologically important lactam-fused indolines in one-pot synthesis. Subsequently, a plausible photoredox pathway is proposed based on control experiments. The preliminary bioactivity study reveals a potential anticancer property of these structurally appealing indolines.
Collapse
Affiliation(s)
- Xuexue Chang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fangqing Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shibo Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
3
|
García-Domínguez P, Lorenzo P, Álvarez R, de Lera AR. Total Synthesis of the Proposed Structure of (-)-Novofumigatamide, Isomers Thereof, and Analogues. Part I. J Org Chem 2022; 87:12510-12527. [PMID: 36137268 PMCID: PMC9552234 DOI: 10.1021/acs.joc.2c01227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/29/2022]
Abstract
The total synthesis of the suggested structure of (-)-novofumigatamide, a natural product containing a C3-reverse prenylated N-acetyl-exo-hexahydropyrrolo[2,3-b]indole motif fused to a 10-membered ring lactam, was achieved using the macrolactam formation in advance of a diastereoselective bromocyclization and reverse prenylation steps. Since the NMR data of the synthetic sample did not match those of the natural product, the endo-bromo precursor of a N-Boc analogue and additional diastereomers derived from l-Trp were also synthesized. Five alternative synthetic routes, which differed in the order of final key steps used for the construction of the 10-membered ring lactam and the hexahydropyrrolo[2,3-b]indole framework within the polycyclic skeleton and also in the amide bond selected for the ring-closing of the macrolactam, were thoroughly explored. Much to our dismay, the lack of spectroscopic correlations between the proposed structure of natural (-)-novofumigatamide and the synthetic products suggested a different connectivity between the atoms. Additional synthetic efforts to assemble alternative structures of the natural product and isomers thereof (see accompanying paper; DOI: 10.1021/acs.joc.2c01228) further highlighted the frustrating endeavors toward the identification of a natural product.
Collapse
|
4
|
García-Domínguez P, de Lera AR. Puzzling Out the Structure of Novofumigatamide: Total Synthesis of Constitutional Isomers. Part II. J Org Chem 2022; 87:12528-12546. [PMID: 36129245 PMCID: PMC9552235 DOI: 10.1021/acs.joc.2c01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
The total synthesis
of several constitutional isomers
showing a
different connectivity of the macrolactam ring with the hexahydropyrrolo[2,3-b]indole core, as well as those arising from the positional
exchange of the valine and the anthranilate units of the structure
originally proposed for (−)-novofumigatamide, has been carried
out. The constitutional isomers with 12-membered ring macrolactam
connected with the pyrroloindoline framework through the indole nitrogen,
and the acetyl group at the pyrrole nitrogen, of endo relative configuration, were prepared through the condensation between
the tryptophan and valine edges derived from l- or d-tryptophan and l-valine amino acids. The corresponding exo products are highly unstable structures difficult to
isolate and characterize. A second group of isomeric structures synthesized
considered the positional exchange between the valine and the anthranilate
residues within the macrolactam ring in the originally proposed macrocyclic
structure. Comparison of the spectroscopic data allowed us to discard
these alternative structures for the natural product.
Collapse
|
5
|
Scheide MR, Nicoleti CR, Martins GM, Braga AL. Electrohalogenation of organic compounds. Org Biomol Chem 2021; 19:2578-2602. [DOI: 10.1039/d0ob02459g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review we target sp, sp2 and sp3 carbon fluorination, chlorination, bromination and iodination reactions using electrolysis as a redox medium. Mechanistic insights and substrate reactivity are also discussed.
Collapse
Affiliation(s)
- Marcos R. Scheide
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Celso R. Nicoleti
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Guilherme M. Martins
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Antonio L. Braga
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| |
Collapse
|
6
|
Vincent G, Abou-Hamdan H, Kouklovsky C. Dearomatization Reactions of Indoles to Access 3D Indoline Structures. Synlett 2020. [DOI: 10.1055/s-0040-1707152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This Account summarizes our involvement in the development of dearomatization reactions of indoles that has for origin a total synthesis problematic. We present the effort from our group to obtain 3D-indolines scaffold from the umpolung of N-acyl indoles via activation with FeCl3 to the oxidative spirocyclizations of N-EWG indoles and via the use of electrochemistry.1 Introduction2 Activation of N-Acyl Indoles with FeCl3
2.1 Hydroarylation of N-Acyl Indoles2.2 Difunctionalization of N-Acyl Indoles3 Radical-Mediated Dearomatization of Indoles for the Synthesis of Spirocyclic Indolines4 Electrochemical Dearomatization of Indoles4.1 Direct Electrochemical Oxidation of Indoles4.2 Indirect Electrochemical Oxidation of Indoles5 Conclusion
Collapse
|
7
|
Liu K, Deng Y, Song W, Song C, Lei A. Electrochemical Dearomative Halocyclization of Tryptamine and Tryptophol Derivatives. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Yuqi Deng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Wenxu Song
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Chunlan Song
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
8
|
Smith IT, Neeley JB, Brinley TD, Fullmer PR, Andrus MB. Synthesis of pyrroloindolines through formal [3 + 2]-cycloaddition of indoles with chiral N-2-acetamidoacrylyl oxazolidinones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Wu J, Abou-Hamdan H, Guillot R, Kouklovsky C, Vincent G. Electrochemical synthesis of 3a-bromofuranoindolines and 3a-bromopyrroloindolines mediated by MgBr2. Chem Commun (Camb) 2020; 56:1713-1716. [DOI: 10.1039/c9cc09276e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient and environmentally friendly electrochemical approach to perform the bromo cyclization of tryptophol, tryptamine and tryptophan derivatives.
Collapse
Affiliation(s)
- Ju Wu
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)
- Université Paris-Saclay
- CNRS
- 91405 Orsay
- France
| | - Hussein Abou-Hamdan
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)
- Université Paris-Saclay
- CNRS
- 91405 Orsay
- France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)
- Université Paris-Saclay
- CNRS
- 91405 Orsay
- France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)
- Université Paris-Saclay
- CNRS
- 91405 Orsay
- France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)
- Université Paris-Saclay
- CNRS
- 91405 Orsay
- France
| |
Collapse
|
10
|
Hakamata H, Ueda H, Tokuyama H. Construction of Indole Structure on Pyrroloindolines via AgNTf 2-Mediated Amination/Cyclization Cascade: Application to Total Synthesis of (+)-Pestalazine B. Org Lett 2019; 21:4205-4209. [PMID: 31117711 DOI: 10.1021/acs.orglett.9b01399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An N-linked indole structure was constructed on the 3a-position of pyrroloindoline derivatives via a cascade process involving silver-mediated amination of bromopyrroloindolines with 2-ethynylanilines with subsequent 5- endo-dig cyclization. In this reaction, AgNTf2 was used as a tandem reagent, which activated the bromo group as a σ-Lewis acid and the alkyne moiety as a π-Lewis acid. Switching from the initial step to the second step was conducted by controlling the temperature. This protocol was applied to the synthesis of various pyrroloindolines, α-carboline, and furoindolines and the total synthesis of a dimeric indole alkaloid, (+)-pestalazine B.
Collapse
Affiliation(s)
- Hiroyuki Hakamata
- Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba 6-3, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba 6-3, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba 6-3, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| |
Collapse
|
11
|
Jiang X, Zhu W, Yang L, Zheng Z, Yu C. Hypervalent Iodine-Mediated Cyclization of Homotryptamine Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Weijie Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Liechao Yang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Zicong Zheng
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
12
|
Han J, Niu ST, Liu Y, Gan L, Wang T, Lu CD, Yuan T. Robustanoids A and B, two novel pyrrolo[2,3-b]indole alkaloids from Coffea canephora: isolation and total synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00931c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two novel pyrrolo[2,3-b]indole alkaloids were isolated from Coffea canephora beans; their structures were confirmed by total synthesis.
Collapse
Affiliation(s)
- Jianxin Han
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Sheng-Tong Niu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Yushuang Liu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Lishe Gan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Tianfu Wang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Chong-Dao Lu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| | - Tao Yuan
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone
- State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
| |
Collapse
|