1
|
Wurzer N, Klimczak U, Babl T, Fischer S, Angnes RA, Kreutzer D, Pattanaik A, Rehbein J, Reiser O. Heck-Type Coupling of Fused Bicyclic Vinylcyclopropanes: Synthesis of 1,2-Dihydropyridines, 2,3-Dihydro-1 H-azepines, 1,4-Cyclohexadienes, and 2 H-Pyrans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolai Wurzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Urszula Klimczak
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Tobias Babl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sebastian Fischer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ricardo A. Angnes
- Institute of Chemistry, University of Campinas, Rua Carlos Gomes, 241, Cidade Universitária, Campinas, 13083-970 São Paulo, Brazil
| | - Dominik Kreutzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Aryaman Pattanaik
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Julia Rehbein
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Suárez‐Rodríguez T, Suárez‐Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed Intermolecular Formal [4+2] Cycloaddition of O-Aryl Ynol Ethers and Enol Ethers: Synthesis of Chromene Derivatives. Chemistry 2021; 27:13079-13084. [PMID: 34278626 PMCID: PMC8518403 DOI: 10.1002/chem.202102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Gold(I)-catalyzed formal [4+2] cycloaddition of O-aryl ynol ethers 1 and enol ethers 2 is described. This intermolecular reaction between two electron-rich unsaturated systems takes place, under mild conditions, in the presence of 5 mol% [IPrAu(CH3 CN)]SbF6 as catalyst giving chromene derivatives with good yields. The cycloaddition is completely regio- and stereoselective, as well as versatile for both reactives. Silyl enol ethers can also react in the same way and under the same reaction conditions with quantitative yields. A plausible mechanism through a selective addition of the enol ether to the alkyne gold activated complex followed by an intramolecular aromatic electrophilic substitution is proposed. Several experimental results support the presence of a cationic oxonium intermediate prior to the aromatic substitution. The reaction represents a new entry to the chromene core.
Collapse
Affiliation(s)
- Tatiana Suárez‐Rodríguez
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Ángel L. Suárez‐Sobrino
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| |
Collapse
|
3
|
Wang J, Blaszczyk SA, Li X, Tang W. Transition Metal-Catalyzed Selective Carbon-Carbon Bond Cleavage of Vinylcyclopropanes in Cycloaddition Reactions. Chem Rev 2021; 121:110-139. [PMID: 32786421 PMCID: PMC9576321 DOI: 10.1021/acs.chemrev.0c00160] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, transition metal-catalyzed methodologies and applications that exploit C-C bond cleavage of vinylcyclopropanes (VCPs) are summarized with a focus on cycloaddition and related addition reactions. Transition metals, including palladium, nickel, iron, ruthenium, rhodium, cobalt, and iridium, can catalyze the cleavage of C-C bonds in activated or nonactivated VCPs. Additionally, these bond-breaking reactions can occur as intra- or intermolecular processes. The properties of activated and nonactivated VCPs are discussed in the Introduction. Various transition metal-catalyzed cycloaddition and addition reactions involving the cleavage of C-C bonds in activated VCPs are then discussed in the next chapter. The transition metal-catalyzed cycloadditions involving the cleavage of C-C in nonactivated VCPs are summarized in the following chapter. Finally, challenges and potential opportunities are outlined in the last chapter.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Stephanie A. Blaszczyk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Caillé J, Robiette R. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. Org Biomol Chem 2021; 19:5702-5724. [PMID: 34114583 DOI: 10.1039/d1ob00838b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The stereocontrolled formation of medium-sized carbocycles is a major goal in modern organic chemistry due to their widespread occurrence in natural products and pharmaceutically active ingredients. One approach consists in the use of cycloaddition reactions which notably results in high selectivities and atom-economy. To this end, cyclopropanes are ideal substrates since they can provide readily functionalized three- or five-carbon synthons. Herein we report advances made in cycloaddition reactions of cyclopropanes towards the synthesis of medium-sized carbocycles via transition metal catalysis or Lewis acid catalysis.
Collapse
Affiliation(s)
- Julien Caillé
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium. and Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR-CNRS 7182, Université Paris Est Créteil (UPEC), 2 Rue Henri Dunant, 94320 Thiais, France.
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
5
|
Trost BM, Zuo Z, Schultz JE. Transition-Metal-Catalyzed Cycloaddition Reactions to Access Seven-Membered Rings. Chemistry 2020; 26:15354-15377. [PMID: 32705722 DOI: 10.1002/chem.202002713] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Indexed: 02/06/2023]
Abstract
The efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis. The inherent entropic penalty associated with achieving these transformations has impressively been overcome with development of catalysis, whereby the reaction components can be pre-organized through activation by transition-metal-catalysis. The fine-tuning of metal/ligand combinations as well as reaction conditions allows for achieving chemo-, regio-, diastereo- and enantioselectivity in these transformations. Herein, we discuss recent advances in transition-metal-catalyzed construction of seven-membered rings via combination of 2-4 components mediated by a variety of metals. An emphasis is placed on the mechanistic aspects of these transformations to both illustrate the state of the science and to highlight the unique application of novel processes of transition-metals in these transformations.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Johnathan E Schultz
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, 08901, USA
| |
Collapse
|
6
|
McDonald TR, Mills LR, West MS, Rousseaux SAL. Selective Carbon–Carbon Bond Cleavage of Cyclopropanols. Chem Rev 2020; 121:3-79. [DOI: 10.1021/acs.chemrev.0c00346] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tyler R. McDonald
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - L. Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael S. West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
Jiang B, Desilles N, Burel F. Ketene-based aliphatic polyketones obtained by cationic copolymerization of dimethylketene (DMK) with diethylketene (DEK) or diphenylketene (DPK): synthesis, characterization and reactivity ratio estimation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02283-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhu X, Wang Z, Hou B, Zhang H, Deng C, Ye L. Zinc‐Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2
H
‐Azepines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ze‐Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Bo‐Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao‐Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Zhu XQ, Wang ZS, Hou BS, Zhang HW, Deng C, Ye LW. Zinc-Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2H-Azepines. Angew Chem Int Ed Engl 2019; 59:1666-1673. [PMID: 31724314 DOI: 10.1002/anie.201912534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
6π electrocyclization has attracted interest in organic synthesis because of its high stereospecificity and atom economy in the construction of versatile 5-7-membered cycles. However, examples of asymmetric 6π electrocyclization are quite scarce, and have to rely on the use of chiral organocatalysts, and been limited to pentadienyl-anion- and triene-type 6π electrocyclizations. Described herein is a zinc-catalyzed formal [4+3] annulation of isoxazoles with 3-en-1-ynol ethers via 6π electrocyclization, leading to the site-selective synthesis of functionalized 2H-azepines and 4H-azepines in good to excellent yields with broad substrate scope. Moreover, this strategy has also been used to produce chiral 2H-azepines with high enantioselectivities (up to 97:3 e.r.). This protocol not only is the first asymmetric heptatrienyl-cation-type 6π electrocyclization, but also is the first asymmetric reaction of isoxazoles with alkynes and the first asymmetric catalysis based on ynol ethers.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo-Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao-Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Zeng L, Sajiki H, Cui S. One-Pot Reaction of Carboxylic Acids, Ynol Ethers, and m-CPBA for Synthesis of α-Carbonyloxy Esters. Org Lett 2019; 21:6423-6426. [PMID: 31343885 DOI: 10.1021/acs.orglett.9b02323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel one-pot reaction of carboxylic acids, ynol ethers, and m-CPBA for the synthesis of α-carbonyloxy esters in the presence of Ag2O is described. This process provides a direct approach to α-carbonyloxy esters with the achievement of formation of three C-O bonds. The protocol is featured with readily available starting materials and broad substrate scope. Control reactions and isotope-labeling reactions were conducted to elucidate a plausible mechanism.
Collapse
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Hironao Sajiki
- Laboratory of Organic Chemistry , Gifu Pharmaceutical University , Gifu 501-1196 , Japan
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
11
|
Wu D, He Q, Chen D, Ye J, Huang P. A Stepwise Annulation for the Transformation of Cyclic Ketones to Fused 6 and 7‐Membered Cyclic Enimines and Enones. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dong‐Ping Wu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Qian He
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Dong‐Huang Chen
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Jian‐Liang Ye
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| |
Collapse
|
12
|
Gao K, Zhang YG, Wang Z, Ding H. Recent development on the [5+2] cycloadditions and their application in natural product synthesis. Chem Commun (Camb) 2019; 55:1859-1878. [DOI: 10.1039/c8cc09077g] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The recent developments on the [5+2] cycloadditions and their application in the synthesis of complex natural products are discussed.
Collapse
Affiliation(s)
- Kai Gao
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Yong-Gang Zhang
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Zhiming Wang
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Hanfeng Ding
- Institute of Medicinal Natural Products
- School of Advanced Study
- Taizhou University
- Taizhou 318000
- P. R. China
| |
Collapse
|
13
|
Brownsey DK, Gorobets E, Derksen DJ. Beyond geminal diesters: increasing the scope of metal-mediated vinylcyclopropane annulations while decreasing pre-activation. Org Biomol Chem 2018; 16:3506-3523. [DOI: 10.1039/c8ob00593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the transition metal mediated annulation chemistry of vinylcyclopropanes with an emphasis on non-donor–acceptor examples, and where pertinent, examples of natural product syntheses are shown.
Collapse
|