1
|
Gao M, Lu S, Xu B. C-H functionalization enabled by multiple isocyanides. Chem Soc Rev 2024; 53:10147-10170. [PMID: 39228343 DOI: 10.1039/d4cs00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Past decades have witnessed significant advance of isocyanides as a class of versatile organic synthons as well as their broad applications in multi-component reactions (MCRs) and other tandem reactions. Reactions involving multiple isocyanides allow the construction of molecules with further diversification and complexity, while C-H functionalization emphasizes the advantages of high atom economy, broad substrate availability and great synthetic efficiency. This promising synergistic strategy of C-H functionalization involving multiple isocyanides provides a variety of valuable synthetic methods for organic chemists' toolbox and offers considerable potential in pharmaceutical chemistry and materials science as well. The present review outlines in detail various reaction types of C-H functionalization enabled by multiple isocyanides, and the relevant mechanistic rationale is discussed.
Collapse
Affiliation(s)
- Mingchun Gao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Shaohang Lu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Doraghi F, Morshedsolouk MH, Zahedi NA, Larijani B, Mahdavi M. Phthalimides: developments in synthesis and functionalization. RSC Adv 2024; 14:22809-22827. [PMID: 39035712 PMCID: PMC11259108 DOI: 10.1039/d4ra03859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Phthalimides, an important class of biologically active N-heterocycles, are not only found in pharmaceuticals, natural products, agrochemicals, polymers, and dyes, but also serve as building blocks in organic transformations. Many synthetic methods, including metal catalysis and metal-free systems, have been developed to prepare functionalized phthalimides. In this review, we describe the developments in the synthesis and functionalization of phthalimides over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Hossein Morshedsolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Nawrooz Ali Zahedi
- Department of Chemistry, Faculty of Education, Ghazni University Ghazni Afghanistan
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Saeifard L, Amiri K, Rominger F, Müller TJJ, Balalaie S. Synthesis of Polysubstituted Pyrimidines through Palladium-Catalyzed Isocyanide Insertion to 2 H-Azirines. J Org Chem 2023; 88:12519-12525. [PMID: 37524078 DOI: 10.1021/acs.joc.3c01248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The domino process of the palladium-catalyzed coupling reaction of isocyanides with 2H-azirine provides various tetrasubstituted pyrimidines via one C-C bond and two C-N bond formations with satisfactory yields. The title compounds are obtained with good functional group tolerance, high atom economy, and broad substrate scopes.
Collapse
Affiliation(s)
- Leyla Saeifard
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Kamran Amiri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, D-69120 Heidelberg, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
4
|
Golling S, Hansjacob P, Bami N, Leroux FR, Donnard M. Direct Access to 2,3-Disubstituted Amido-Indenones through Annulation of 2-Iodobenzaldehydes with Ynamides. J Org Chem 2022; 87:16860-16866. [PMID: 36472915 DOI: 10.1021/acs.joc.2c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper we report the annulation reaction between 2-iodobenzaldehyde derivatives and various ynamides. This palladium-catalyzed reaction leads to rare polysubstituted amino-indenones in good yields with a regioselectivity up to complete. Remarkably, a regiodivergent selectivity has been identified between aryl and alkyl or silyl ynamides, with the first leading mainly to 2-amido-indenones and the second to 3-amido-indenones.
Collapse
Affiliation(s)
- Stéphane Golling
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, F-67000 Strasbourg, France
| | - Pierre Hansjacob
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, F-67000 Strasbourg, France
| | - Nassim Bami
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, F-67000 Strasbourg, France
| | - Frédéric R Leroux
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, F-67000 Strasbourg, France
| | - Morgan Donnard
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Bao Z, Chen C. Efficient synthesis of cyclic imides by the tandem N-arylation-acylation and rearrangement reaction of cyanoesters with diaryliodonium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ram S, Mehara P, Kumar A, Sharma AK, Chauhan AS, Kumar A, Das P. Supported-Pd catalyzed carbonylative synthesis of phthalimides and isoindolinones using Oxalic acid as in situ CO surrogate with 2-iodobenzamides and 2-iodobenzylanilines in ppm-level catalyst loading. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Bagheri M, Mohammadsaeed S, Gholamzadeh P. Annulation of the Ugi Products Using Palladium Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maedeh Bagheri
- Department of Physics and Chemistry Alzahra University, Vanak Square Tehran Iran
| | - Shirin Mohammadsaeed
- Department of Physics and Chemistry Alzahra University, Vanak Square Tehran Iran
| | - Parisa Gholamzadeh
- Young Researchers and Elites Club Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
8
|
Kang C, Xu J, Li X, Wang S, Jiang G, Ji F. Oxidative C-H/N-H Carbonylation of Benzamide by Nickel Catalysis with CO as the Carbonyl Source. J Org Chem 2022; 87:10390-10397. [PMID: 35881524 DOI: 10.1021/acs.joc.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and direct carbonylation of aminoquinoline benzamides has been developed using abundant and inexpensive Ni(OAc)2·4H2O as the catalyst and carbon monoxide as a cost-efficient C1 building block. This process features good functional-group tolerance and can be conducted on gram scale. The directing group can be easily removed under mild conditions.
Collapse
Affiliation(s)
- Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Jiawei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| |
Collapse
|
9
|
Lin HS, Pan YZ, Tian YH, Pan YM, Wang X. Palladium‐Catalyzed Tandem Cyclization of 2‐(2 Ethynylphenyl)acetonitriles and Isocyanides: Access to Indeno[2,1‐b]pyrroles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui-Shu Lin
- Guangxi University of Science and Technology CHINA
| | | | - Yu-Hong Tian
- Guangxi University of Science and Technology CHINA
| | - Ying-ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources CHINA
| | - Xu Wang
- Guangxi University of Science and Technology CHINA
| |
Collapse
|
10
|
Farajpour B, Alizadeh A. Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Org Biomol Chem 2022; 20:8366-8394. [DOI: 10.1039/d2ob01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides a review of the applications of α,α-dicyanoolefins as versatile vinylogous nucleophiles in the synthesis of various cyclic compounds, covering the literature from the past 13 years.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
11
|
Zhu YM, Fang Y, Li H, Xu XP, Ji SJ. Divergent Reaction of Isocyanides with o-Bromobenzaldehydes: Synthesis of Ketenimines and Lactams with Isoindolinone Cores. Org Lett 2021; 23:7342-7347. [PMID: 34523342 DOI: 10.1021/acs.orglett.1c02422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent reaction of isocyanides with o-bromobenzaldehydes for the synthesis of isoindolinone-derived ketenimines and lactams was disclosed. The reaction features readily available reactants, relatively mild conditions, and high yields of products. Ketenimines could be applied in further transformations for access to other functional molecules. A mechanism study showed that the palladium-migration/imine-insertion process was the key step in this reaction.
Collapse
Affiliation(s)
- Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Yizhan Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Haiyan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
12
|
Wang X, Fu J, Mo J, Tian Y, Liu C, Tang H, Sun Z, Pan Y. Assembly of 5‐Aminoimidazoles via Palladium‐Catalysed Double Isocyanide Insertion Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jin‐Ping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jia‐Hui Mo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Yu‐Hong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Chun‐You Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Jun Sun
- Research Centre for Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
13
|
Mei C, Zhao M, Lu W. Equivalent Loading of Directed Arenes in Pd(II)-Catalyzed Oxidative Cross-Coupling of Aryl C-H Bonds at Room Temperature. J Org Chem 2021; 86:2714-2733. [PMID: 33443427 DOI: 10.1021/acs.joc.0c02722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The unsymmetrical biaryls (Ar1-Ar2) produced by the catalytic cross-couplings of aryl halides (Ar1-halo) with aryl metallics (Ar2-M) in the loading ratio of 1:1 are popular in chemical synthesis. In contrast, there has been less precedence on the same biaryls produced effectively from two normal aryl C-H bonds with equivalent loading. Here, we report that, in a palladium/oxidant/acid catalytic system at room temperature, one arene (Ar1-H, 1 equiv) can highly selectively couple with the other one (Ar2-H, 1 equiv) to afford the target Ar1-Ar2 just by controlling the directing groups and the substituted groups on their phenyl rings. The utility of this one-one cross-coupling is also demonstrated by synthesis of a few bioactive molecules.
Collapse
Affiliation(s)
- Chong Mei
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mengdi Zhao
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Lu
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
14
|
Alizadeh A, Farajpour B, Knedel TO, Janiak C. Synthesis of Substituted Phthalimides via Ultrasound-Promoted One-Pot Multicomponent Reaction. J Org Chem 2021; 86:574-580. [PMID: 33226238 DOI: 10.1021/acs.joc.0c02245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel strategy for the straightforward synthesis of substituted phthalimides is described, which includes base-mediated Michael addition/intramolecular cyclization/[1,5]-H shift/cleavage of CS2/aromatization/nucleophilic acyl substitution reaction of 2-(4-oxo-2-thioxothiazolidin-5-ylidene)acetates and α,α-dicyanoolefines under ultrasound (US) irradiation. Some advantages of this method are as follows: having simple operation, easily accessible starting materials, chemoselective cascade process, synthetically useful yields, and green conditions by utilizing US irradiation as a source of energy and using ethanol as solvent.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Tim-Oliver Knedel
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Abstract
This review highlights (2010–2021) different strategies for the construction of the phthalimide core apart from traditional synthetic routes.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), 743165, India
| |
Collapse
|
16
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
17
|
Ren ZL, Cai S, Liu YY, Xie YQ, Yuan D, Lei M, He P, Wang L. C(sp2)–H Functionalization of Imidazole at the C2- and C4-Position via Palladium-Catalyzed Isocyanide Insertion Leading to Indeno[1,2-d]imidazole and Imidazo[1,2-a]indole Derivatives. J Org Chem 2020; 85:11014-11024. [DOI: 10.1021/acs.joc.0c01454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Shuang Cai
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ying-Ying Liu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Yin-Qing Xie
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ding Yuan
- School of Biology and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan Province, 617000, P. R. of China
| | - Min Lei
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ping He
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei Province, 443002, P. R. of China
| |
Collapse
|
18
|
Transition metal-free NaOH-catalyzed hydration of nitriles to primary amides in NH 3·H 2O-DMSO mixture. Mol Divers 2020; 25:1131-1136. [PMID: 32088812 DOI: 10.1007/s11030-020-10058-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
In this paper, we reported an efficient protocol for hydration of aryl(hetero) and alkyl nitriles toward primary amides with 0.1 equiv. NaOH in NH3·H2O-DMSO under mild conditions. Various substituted nitriles are smoothly converted to the corresponding amides with good to excellent isolated yields. Gram-scale reactions were also performed to produce the desired products in high yields. In addition, the excessive hydrolysis of the nitrile to form the corresponding carboxylic acid was also achieved with increasing the amount of NaOH and prolonging the reaction time.
Collapse
|
19
|
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Dina Scarpi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| |
Collapse
|
20
|
He D, Zhuang Z, Wang X, Li J, Li J, Wu W, Zhao Z, Jiang H, Tang BZ. Assembly of 1 H-isoindole derivatives by selective carbon-nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. Chem Sci 2019; 10:7076-7081. [PMID: 31588275 PMCID: PMC6677114 DOI: 10.1039/c9sc01035a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
A method of selectively activating carbon–nitrogen triple bonds has been developed to access 1H-isoindole AIE fluorophores for lipid droplet imaging.
A novel strategy has been established to assemble a series of single (Z)- or (E)-1H-isoindole derivatives through selectively and sequentially activating carbon–nitrogen triple bonds in a multicomponent system containing various nucleophilic and electrophilic sites. The reaction provides efficient access to structurally unique fluorophores with aggregation-induced emission characteristics. These new fluorophores show fluorescence wavelengths and efficiencies that can be modulated and have excellent potential to specifically light up lipid droplets (LDs) in living cells with bright fluorescence, low cytotoxicity and better photostability than commercially available LD-specific dyes.
Collapse
Affiliation(s)
- Dandan He
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Jiawei Li
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ; .,State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Kowloon , Hong Kong , China
| |
Collapse
|
21
|
Wang MR, Deng L, Liu GC, Wen L, Wang JG, Huang KB, Tang HT, Pan YM. Porous Organic Polymer-Derived Nanopalladium Catalysts for Chemoselective Synthesis of Antitumor Benzofuro[2,3- b]pyrazine from 2-Bromophenol and Isonitriles. Org Lett 2019; 21:4929-4932. [PMID: 31082239 DOI: 10.1021/acs.orglett.9b01230] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient strategy for the synthesis of benzofuro[2,3- b]pyrazines was developed. These tricyclic scaffolds were formed through a multistep cascade sequence, which includes double insertion of isonitriles and chemoselective bicyclization. In this reaction, a nanopalladium was used as a recyclable catalyst. Product 3w exhibited excellent anticancer activity toward T-24 (IC50 = 12.5 ± 0.9 μM) and HeLa (IC50 = 14.7 ± 1.6 μM) cells. We also explored the action mechanism of 3w on T-24 cells.
Collapse
Affiliation(s)
- Mao-Rui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Guo-Chen Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ling Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Jin-Ge Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
22
|
Rinaldi A, Langé V, Gómez-Bengoa E, Zanella G, Scarpi D, Occhiato EG. Synthesis of Indenes by Tandem Gold(I)-Catalyzed Claisen Rearrangement/Hydroarylation Reaction of Propargyl Vinyl Ethers. J Org Chem 2019; 84:6298-6311. [DOI: 10.1021/acs.joc.9b00646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Vittoria Langé
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Giovanna Zanella
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Dina Scarpi
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
23
|
Dechert-Schmitt AM, Garnsey MR, Wisniewska HM, Murray JI, Lee T, Kung DW, Sach N, Blackmond DG. Highly Modular Synthesis of 1,2-Diketones via Multicomponent Coupling Reactions of Isocyanides as CO Equivalents. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00581] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Michelle R. Garnsey
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Hanna M. Wisniewska
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - James I. Murray
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Taegyo Lee
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel W. Kung
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Neal Sach
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Donna G. Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Ren ZL, He P, Lu WT, Sun M, Ding MW. Synthesis of iminoisoindolinones via a cascade of the three-component Ugi reaction, palladium catalyzed isocyanide insertion, hydroxylation and an unexpected rearrangement reaction. Org Biomol Chem 2019; 16:6322-6331. [PMID: 30131989 DOI: 10.1039/c8ob01728j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A robust ligand-free palladium-catalyzed cascade reaction for the synthesis of diversely substituted iminoisoindolinones has been developed. The cascade reaction involves isocyanide insertion into Ugi-3CR adducts, accompanied by unexpected hydroxylation and rearrangement.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Sun H, Tang S, Li D, Zhou Y, Huang J, Zhu Q. Cascade double isocyanide insertion and C-N coupling of 2-iodo-2'-isocyano-1,1'-biphenyls. Org Biomol Chem 2019; 16:3893-3896. [PMID: 29766195 DOI: 10.1039/c8ob00956b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A palladium-catalyzed double isocyanide insertion using 2-iodo-2'-isocyano-1,1'-biphenyls followed by copper-catalyzed intramolecular C-N coupling, delivering a unique heterocyclic structure containing both phenanthridine and carbazole scaffolds, has been developed. In this cascade process, four chemical bonds, including two C-C, one C-O, and one C-N bonds are formed consecutively without isolating an intermediate. The strategy of using a functionalized isocyanide in double insertion provides a quick approach for constructing heterocyclic systems with high bond-forming efficiency.
Collapse
Affiliation(s)
- Hongwei Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Yuan YC, Bruneau C, Dorcet V, Roisnel T, Gramage-Doria R. Ru-Catalyzed Selective C–H Bond Hydroxylation of Cyclic Imides. J Org Chem 2019; 84:1898-1907. [DOI: 10.1021/acs.joc.8b02899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Chao Yuan
- Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | | | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | | | | |
Collapse
|
27
|
Wang X, Li J, Huang Y, Zhu J, Hu R, Wu W, Jiang H. Facile Synthesis of π-Conjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. J Org Chem 2018; 83:10453-10464. [DOI: 10.1021/acs.joc.8b01494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
Cai J, Hu Z, Li Y, Liu J, Xu X. Synthesis and Reactivity of o
-Enoyl Arylisocyanides: Access to Phenanthridine-8-Carboxylate Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinxiong Cai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Jun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry; Northeast Normal University; Changchun 130024 People's Republic of China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| |
Collapse
|
29
|
Tong W, Li WH, He Y, Mo ZY, Tang HT, Wang HS, Pan YM. Palladium-Metalated Porous Organic Polymers as Recyclable Catalysts for the Chemioselective Synthesis of Thiazoles from Thiobenzamides and Isonitriles. Org Lett 2018; 20:2494-2498. [PMID: 29620903 DOI: 10.1021/acs.orglett.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two types of thiazole derivatives are synthesized through a multistep cascade sequence with Pd-metalated phosphorus-doped porous organic polymers (POPs) as heterogeneous catalysts. The POPs could be used as both ligands and catalyst supports. No obvious aggregation and loss of any catalytic activity of the catalysts were observed after 10 runs of the reaction. More importantly, imidazo[4,5- d]thiazoles, which are a new class of thiazole derivatives, could be obtained through K2CO3-promoted intramolecular cyclization of the synthesized polysubstituted thiazoles. Furthermore, the in vitro anticancer activity of these new compounds were tested with MTT assay, and compound 4b exhibited good antitumor activity toward T-24 and A549 cells with IC50 values of 10.3 ± 0.8 and 11.8 ± 0.5 μM, respectively. In addition, the action mechanism of 4b on tumor cells was determined.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Wen-Hao Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yan He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Zu-Yu Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|