1
|
Kollár L, Grabrijan K, Hrast Rambaher M, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Boronic acid inhibitors of penicillin-binding protein 1b: serine and lysine labelling agents. J Enzyme Inhib Med Chem 2024; 39:2305833. [PMID: 38410950 PMCID: PMC10901194 DOI: 10.1080/14756366.2024.2305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
2
|
Watanabe K, Nagao K, Ohmiya H. Deoxygenative Geminal Silylboration of Amides Using Silylboronates: Synthesis and Use of α-Boryl-α-Silylalkylamines. Angew Chem Int Ed Engl 2024; 63:e202411990. [PMID: 39103297 DOI: 10.1002/anie.202411990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
α-Silylalkylamines and α-borylalkylamines are versatile synthetic intermediates and attractive scaffolds found in pharmaceutical drugs and agrochemicals. Despite great progress on synthetic methods for preparation of α-silylalkylamines or α-borylalkylamines, there are no general strategies for preparation of α-boryl-α-silylalkylamines and the reactivity has not been explored. Here we report deoxygenative geminal silylboration of amides using silylboronates in the presence of alkoxide base catalyst, producing α-boryl-α-silylalkylamines. The silicon and boron groups in α-boryl-α-silylalkylamines are found to be utilized to chemoselective transformations, such as protonation and alkylation. This protocol serves various α-silylalkylamines and α-borylalkylamines from readily available amides.
Collapse
Affiliation(s)
- Koh Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kazunori Nagao
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Serafino A, Pierre H, Le Vaillant F, Boutet J, Guillamot G, Neuville L, Masson G. Visible-Light-Driven Decarboxylative Borylation: Rapid Access to α- and β-Amino-boronamides. Org Lett 2023; 25:9249-9254. [PMID: 38113295 DOI: 10.1021/acs.orglett.3c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we described a two-step process involving an efficient visible-light-induced decarboxylative borylation of α- and β-amino redox-active esters with bis(catecholato)diboron, followed by transamination with 1,8-diaminonapthalene (DANH2). A series of boronamides were obtained in moderate to excellent yields in this one-pot procedure. The photochemical process proved to be very efficient even when conducted under flow conditions with shorter reaction durations and scalable synthesis of DAN boronates.
Collapse
Affiliation(s)
- Andrea Serafino
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Hugo Pierre
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Franck Le Vaillant
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Julien Boutet
- SEQENS SAS, 21 Chemin de la Sauvegarde, 21 Ecully Parc, 69130 Ecully, France
| | - Gérard Guillamot
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Luc Neuville
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Géraldine Masson
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Allen MA, Volosheniuk M, Nicol EA, Schwan AL, Beauchemin AM. Cope-Type Hydroamination of Vinylboronates. Org Lett 2023; 25:3045-3048. [PMID: 37097727 DOI: 10.1021/acs.orglett.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Aminoboronic acid derivatives can serve as versatile synthetic intermediates and pharmacophores but remain difficult to synthesize. Herein we report a synthesis of the β-aminoboronic acid motif via anti-Markovnikov hydroamination of vinylboronates. This reaction benefits from the activating effect of the boronate substituent and forms novel BON-containing heterocycles, oxazaborolidine zwitterions. A computational study is included to help determine the effects of alkene boron substitution. Derivatization reactions also support the synthetic utility of the oxazaborolidine adducts.
Collapse
Affiliation(s)
- Meredith A Allen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Myroslava Volosheniuk
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Eric A Nicol
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adrian L Schwan
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Volpe MR, Velilla JA, Daniel-Ivad M, Yao JJ, Stornetta A, Villalta PW, Huang HC, Bachovchin DA, Balbo S, Gaudet R, Balskus EP. A small molecule inhibitor prevents gut bacterial genotoxin production. Nat Chem Biol 2023; 19:159-167. [PMID: 36253549 PMCID: PMC9889270 DOI: 10.1038/s41589-022-01147-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2022] [Indexed: 02/04/2023]
Abstract
The human gut bacterial genotoxin colibactin is a possible key driver of colorectal cancer (CRC) development. Understanding colibactin's biological effects remains difficult owing to the instability of the proposed active species and the complexity of the gut microbiota. Here, we report small molecule boronic acid inhibitors of colibactin biosynthesis. Designed to mimic the biosynthetic precursor precolibactin, these compounds potently inhibit the colibactin-activating peptidase ClbP. Using biochemical assays and crystallography, we show that they engage the ClbP binding pocket, forming a covalent bond with the catalytic serine. These inhibitors reproduce the phenotypes observed in a clbP deletion mutant and block the genotoxic effects of colibactin on eukaryotic cells. The availability of ClbP inhibitors will allow precise, temporal control over colibactin production, enabling further study of its contributions to CRC. Finally, application of our inhibitors to related peptidase-encoding pathways highlights the power of chemical tools to probe natural product biosynthesis.
Collapse
Affiliation(s)
- Matthew R. Volpe
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| | - José A. Velilla
- grid.38142.3c000000041936754XDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA USA
| | - Martin Daniel-Ivad
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| | - Jenny J. Yao
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| | - Alessia Stornetta
- grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Peter W. Villalta
- grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN USA
| | - Hsin-Che Huang
- grid.51462.340000 0001 2171 9952Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Daniel A. Bachovchin
- grid.51462.340000 0001 2171 9952Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Silvia Balbo
- grid.17635.360000000419368657Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA ,grid.17635.360000000419368657Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN USA
| | - Rachelle Gaudet
- grid.38142.3c000000041936754XDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA USA
| | - Emily P. Balskus
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XHoward Hughes Medical Institute, Harvard University, Cambridge, MA USA
| |
Collapse
|
6
|
Xu M, Ouyang Y, Wang L, Zhang S, Li P. Enantioselective synthesis of cyclic α-aminoboronates via copper-catalyzed dearomative borylation of 4-quinolinols. Chem Commun (Camb) 2022; 58:3677-3680. [PMID: 35225322 DOI: 10.1039/d2cc00027j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective and regioselective dearomative borylation of 4-quinolinols was developed using a Cu(I)/(R,R)-Ph-BPE catalyst for efficient synthesis of unprecedented heterocyclic α-amino boronates, a new class of compounds potentially relevant to drug discovery, in generally excellent yields and enantioselectivities. The products were also useful intermediates for highly functionalized tetrahydroquinolines and cyclic α-aminoboronate derivatives.
Collapse
Affiliation(s)
- Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China.
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China.
| | - Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China.
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China.
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Das KK, Mahato S, Hazra S, Panda S. Development of Methods to the Synthesis of β-Boryl Acyls, Imines and Nitriles. CHEM REC 2022; 22:e202100290. [PMID: 35088513 DOI: 10.1002/tcr.202100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Organoboron compounds are highly important and versatile synthetic intermediates for the preparation of a wide range of organic molecules. Organoboron compounds have drawn significant attention among organic chemists due to their Lewis acidic property, non-toxicity, and commercial availability. Over the last several decades, there has been a substantial development of new organoboron compounds, useful in organic synthesis. Among all other organoboron compounds, β-boryl carbonyl compounds are the important ones. The β-boryl compounds have appeared as promising intermediates for various synthetic transformations. The 1,4-conjugate addition of diboron reagents to carbon-carbon double bond in the presence of different transition-metal catalysts has been extensively reported by various research groups across the globe. This mini-review outlines the numerous racemic as well as asymmetric β-borylation methods developed to date.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Subrata Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
8
|
Gillaizeau I, Dondasse I, Nicolas C, Mimoun L, Sukach V, Meudal H. Iridium‐Catalyzed β‐C(sp
2
)−H Borylation of Enamides – Access to 3,3‐Dihalogeno‐2‐methoxypiperidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Ismaël Dondasse
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Cyril Nicolas
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Liliane Mimoun
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Volodymyr Sukach
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311 CNRS Université d'Orléans, Pôle chimie Rue de Chartres 45100 Orléans France
| | - Hervé Meudal
- Center for Molecular Biophysics, CBM, UPR 4301 CNRS Rue Charles SADRON 45071 Orléans cedex 02 France
| |
Collapse
|
9
|
Yao EZ, Chai GL, Zhang P, Zhu B, Chang J. Chiral dihydroxytetraphenylene-catalyzed enantioselective conjugate addition of boronic acids to β-enaminones. Org Chem Front 2022. [DOI: 10.1039/d1qo01845k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient (S)-2,15-Cl2-DHTP-catalyzed enantioselective conjugate addition of organic boronic acids to β-enaminones has been developed.
Collapse
Affiliation(s)
- En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ping Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
12
|
Ming W, Soor HS, Liu X, Trofimova A, Yudin AK, Marder TB. α-Aminoboronates: recent advances in their preparation and synthetic applications. Chem Soc Rev 2021; 50:12151-12188. [PMID: 34585200 DOI: 10.1039/d1cs00423a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Aminoboronic acids and their derivatives are useful as bioactive agents. Thus far, three compounds containing an α-aminoboronate motif have been approved by the Food and Drug Administration (FDA) as protease inhibitors, and more are currently undergoing clinical trials. In addition, α-aminoboronic acids and their derivatives have found applications in organic synthesis, e.g. as α-aminomethylation reagents for the synthesis of chiral nitrogen-containing molecules, as nucleophiles for preparing valuable vicinal amino alcohols, and as bis-nucleophiles in the construction of valuable small molecule scaffolds. This review summarizes new methodology for the preparation of α-aminoboronates, including highlights of asymmetric synthetic methods and mechanistic explanations of reactivity. Applications of α-aminoboronates as versatile synthetic building blocks are also discussed.
Collapse
Affiliation(s)
- Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Harjeet S Soor
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
13
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
14
|
Pollack SR, Dion A. Metal-Free Stereoselective Synthesis of ( E)- and ( Z)-N-Monosubstituted β-Aminoacrylates via Condensation Reactions of Carbamates. J Org Chem 2021; 86:11748-11762. [PMID: 34479408 DOI: 10.1021/acs.joc.1c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-monosubstituted β-aminoacrylates are building blocks, which have been used in the preparation of amino acids and pharmaceuticals. Two efficient, stereoselective methods of preparation, via acid- or base-promoted condensation reactions of carbamates, are described. The base-promoted reaction is E-selective, while acid catalysis can, through the choice of solvent, selectively form E or Z. The acid-catalyzed E-selective process proceeds through a crystallization obviating the need for chromatographic purification.
Collapse
Affiliation(s)
- Scott R Pollack
- Department of Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Amélie Dion
- Department of Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
15
|
Wang JF, Meng X, Zhang CH, Yu CM, Mao B. Organocatalytic Enantioselective Conjugate Alkynylation of β-Aminoenones: Access to Chiral β-Alkynyl-β-Amino Carbonyl Derivatives. Org Lett 2020; 22:7427-7432. [PMID: 32966092 DOI: 10.1021/acs.orglett.0c02394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Readily available potassium alkynyltrifluoroborates were used for organocatalytic asymmetric conjugate alkynylation of β-enaminones. The interception of a modified binaphthol catalyst and in situ generated organodifluoroboranes proved important to access functionalized β-alkynyl-β-amino carbonyls and derivatives with improved chemo-reactivity and enantio-induction. Mechanistic studies revealed the impact of molecular sieves on efficiency and stereocontrol. The products undergo additional functionalization to yield a diverse set of valuable β-alkynyl-β-amino carbonyl scaffolds.
Collapse
Affiliation(s)
- Jian-Fei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xin Meng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chao-Huan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuan-Ming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Bin Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
16
|
Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Asymmetric Coupling of Carbon‐Centered Radicals Adjacent to Nitrogen: Copper‐Catalyzed Cyanation and Etherification of Enamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guoyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Song Zhou
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Jianping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
17
|
Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Asymmetric Coupling of Carbon‐Centered Radicals Adjacent to Nitrogen: Copper‐Catalyzed Cyanation and Etherification of Enamides. Angew Chem Int Ed Engl 2020; 59:20439-20444. [DOI: 10.1002/anie.202008338] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Guoyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Song Zhou
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 China
| | - Jianping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry and Chemical Engineering Soochow University Jiangsu 215123 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
18
|
Chen L, Yang Y, Liu L, Gao Q, Xu S. Iridium-Catalyzed Enantioselective α-C(sp3)–H Borylation of Azacycles. J Am Chem Soc 2020; 142:12062-12068. [DOI: 10.1021/jacs.0c06756] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Luhua Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| |
Collapse
|
19
|
Bassini E, Gazzotti S, Sannio F, Lo Presti L, Sgrignani J, Docquier JD, Grazioso G, Silvani A. Isonitrile-Based Multicomponent Synthesis of β-Amino Boronic Acids as β-Lactamase Inhibitors. Antibiotics (Basel) 2020; 9:E249. [PMID: 32408714 PMCID: PMC7277116 DOI: 10.3390/antibiotics9050249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
The application of various isonitrile-based multicomponent reactions to protected (2-oxoethyl)boronic acid (as the carbonyl component) is described. The Ugi reaction, both in the four components and in the four centers-three components versions, and the van Leusen reaction, proved effective at providing small libraries of MIDA-protected β-aminoboronic acids. The corresponding free β-aminoboronic acids, quantitatively recovered through basic mild deprotection, were found to be quite stable and were fully characterized, including by 11B-NMR spectroscopy. Single-crystal X-ray diffraction analysis, applied both to a MIDA-protected and a free β-aminoboronic acid derivative, provided evidence for different conformations in the solid-state. Finally, the antimicrobial activities of selected compounds were evaluated by measuring their minimal inhibitory concentration (MIC) values, and the binding mode of the most promising derivative on OXA-23 class D β-lactamase was predicted by a molecular modeling study.
Collapse
Affiliation(s)
- Emanuele Bassini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy; (E.B.); (S.G.); (L.L.P.)
| | - Stefano Gazzotti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy; (E.B.); (S.G.); (L.L.P.)
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy; (F.S.); (J.-D.D.)
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy; (E.B.); (S.G.); (L.L.P.)
| | - Jacopo Sgrignani
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera Italiana (USI), Via V. Vela 6, CH-6500 Bellinzona, Switzerland;
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy; (F.S.); (J.-D.D.)
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy; (E.B.); (S.G.); (L.L.P.)
| |
Collapse
|
20
|
Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Fan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanhua Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D. Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
Yao W, Yang J, Hao F. Ru-Catalyzed Selective C(sp 3 )-H Monoborylation of Amides and Esters. CHEMSUSCHEM 2020; 13:121-125. [PMID: 31599062 DOI: 10.1002/cssc.201902448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Indexed: 06/10/2023]
Abstract
A ruthenium-catalyzed method has been developed for the C(sp3 )-H monoborylation of various unactivated alkyl and aryl amides and challenging esters, with a low-cost and bench-stable boron source, providing boronates with exclusive selectivity, high efficiency, and high turnover number (up to 8900). This novel strategy may offer a versatile and environmentally friendly alternative to current methods for selective C(sp3 )-H borylation that employ even more expensive metals, such as iridium and rhodium.
Collapse
Affiliation(s)
- Wubing Yao
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, Zhejiang, P.R. China
| | - Jianguo Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, Zhejiang, P.R. China
| | - Feiyue Hao
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, Zhejiang, P.R. China
| |
Collapse
|
22
|
George J, Kim HY, Oh K. Copper(i)/DM-SEGPHOS-catalyzed enantio- and diastereoselective conjugate boration to α-alkylidene-γ-lactams. Org Chem Front 2020. [DOI: 10.1039/c9qo01504c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A combination of CuCl and DM-SEGPHOS catalyst system has allowed the development of highly enantioselective and diastereoselective conjugate addition of bis(pinacolato)diboron to α-alkylidene-γ-lactams.
Collapse
Affiliation(s)
- Jimil George
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
23
|
Ming W, Liu X, Friedrich A, Krebs J, Marder TB. The Borono–Strecker Reaction: Synthesis of α-Aminoboronates via a Multicomponent Reaction of Carbonyl Compounds, Amines, and B2pin2. Org Lett 2019; 22:365-370. [DOI: 10.1021/acs.orglett.9b03773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Krebs
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
24
|
Lou Y, Wang J, Gong G, Guan F, Lu J, Wen J, Zhang X. Catalytic asymmetric hydrogenation of ( Z)-α-dehydroamido boronate esters: direct route to alkyl-substituted α-amidoboronic esters. Chem Sci 2019; 11:851-855. [PMID: 34123062 PMCID: PMC8146211 DOI: 10.1039/c9sc04534a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
The direct catalytic asymmetric hydrogenation of (Z)-α-dehydroamino boronate esters was realized. Using this approach, a class of therapeutically relevant alkyl-substituted α-amidoboronic esters was easily synthesized in high yields with generally excellent enantioselectivities (up to 99% yield and 99% ee). The utility of the products has been demonstrated by transformation to their corresponding boronic acid derivatives by a Pd-catalyzed borylation reaction and an efficient synthesis of a potential intermediate of bortezomib. The clean, atom-economic and environment friendly nature of this catalytic asymmetric hydrogenation process would make this approach a new alternative for the production of alkyl-substituted α-amidoboronic esters of great potential in the area of organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Yazhou Lou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
| | - Jun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
| | - Gelin Gong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
| | - Fanfu Guan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
| | - Jiaxiang Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518000 People's Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 People's Republic of China
| |
Collapse
|
25
|
Bai XY, Zhao W, Sun X, Li BJ. Rhodium-Catalyzed Regiodivergent and Enantioselective Hydroboration of Enamides. J Am Chem Soc 2019; 141:19870-19878. [DOI: 10.1021/jacs.9b10578] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Yan Bai
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
26
|
Massaro NP, Chatterji A, Sharma I. Three-Component Approach to Pyridine-Stabilized Ketenimines for the Synthesis of Diverse Heterocycles. J Org Chem 2019; 84:13676-13685. [PMID: 31550889 DOI: 10.1021/acs.joc.9b01906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ketenimines are versatile synthetic intermediates capable of performing novel transformations in organic synthesis. They are normally generated in situ due to their inherent instability and high level of reactivity. Herein, we report pyridine-stabilized ketenimine zwitterionic salts, which are prepared through click chemistry from readily accessible alkynes and sulfonyl azides. To demonstrate their synonymous reactivity to ketenimines, these salts have been utilized in a cascade sequence to access highly functionalized quinolines including the core structures of an antiprotozoal agent and the potent topoisomerase inhibitor Tas-103.
Collapse
Affiliation(s)
- Nicholas P Massaro
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Aayushi Chatterji
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
27
|
Chen H, Huang YH, Ye JL, Huang PQ. Double Addition of Alkynyllithium Reagents to Amides/Lactams: A Direct and Flexible Synthesis of 3-Amino-1,4-diynes Bearing an Aza-Quaternary Carbon Center. J Org Chem 2019; 84:9270-9281. [PMID: 31287315 DOI: 10.1021/acs.joc.9b01416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and mild protocol for the direct and flexible synthesis of 3-amino-1,4-diynes bearing an aza-quaternary carbon from tertiary amides and lactams has been established. The one-pot method consists of in situ activation of amides with trifluoromethanesulfonic anhydride, followed by double addition of alkynyllithium reagents at a concentration of 0.5 mol·L-1 in dichloromethane. This constitutes an extension of the method of direct reductive bisalkylation of amides that allows both employing alkynyllithium reagents as the first-addition nucleophiles and incorporating an alkynyl group as the first-introduced group.
Collapse
Affiliation(s)
- Hang Chen
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Ying-Hong Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Jian-Liang Ye
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| |
Collapse
|
28
|
Tan J, Grouleff JJ, Jitkova Y, Diaz DB, Griffith EC, Shao W, Bogdanchikova AF, Poda G, Schimmer AD, Lee RE, Yudin AK. De Novo Design of Boron-Based Peptidomimetics as Potent Inhibitors of Human ClpP in the Presence of Human ClpX. J Med Chem 2019; 62:6377-6390. [PMID: 31187989 DOI: 10.1021/acs.jmedchem.9b00878] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Boronic acids have attracted the attention of synthetic and medicinal chemists due to boron's ability to modulate enzyme function. Recently, we demonstrated that boron-containing amphoteric building blocks facilitate the discovery of bioactive aminoboronic acids. Herein, we have augmented this capability with a de novo library design and a virtual screening platform modified for covalent ligands. This technique has allowed us to rapidly design and identify a series of α-aminoboronic acids as the first inhibitors of human ClpXP, which is responsible for the degradation of misfolded proteins.
Collapse
Affiliation(s)
- Joanne Tan
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Julie J Grouleff
- Drug Discovery Program , Ontario Institute for Cancer Research, MaRS Centre , 661 University Avenue , Suite 510 , Toronto , Ontario M5G 0A3 , Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre , University Health Network , 610 University Avenue , Toronto , Ontario M5G 2M9 , Canada
| | - Diego B Diaz
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Elizabeth C Griffith
- Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , 262 Danny Thomas Place , Memphis , Tennessee 38105-3678 , United States
| | - Wenjie Shao
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Anastasia F Bogdanchikova
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Gennady Poda
- Drug Discovery Program , Ontario Institute for Cancer Research, MaRS Centre , 661 University Avenue , Suite 510 , Toronto , Ontario M5G 0A3 , Canada.,Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre , University Health Network , 610 University Avenue , Toronto , Ontario M5G 2M9 , Canada
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , 262 Danny Thomas Place , Memphis , Tennessee 38105-3678 , United States
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
29
|
Nishino S, Hirano K, Miura M. Copper-Catalyzed Electrophilic Amination of gem-Diborylalkanes with Hydroxylamines Providing α-Aminoboronic Acid Derivatives. Org Lett 2019; 21:4759-4762. [PMID: 31184168 DOI: 10.1021/acs.orglett.9b01640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Aghekyan AA, Mkryan GG, Tsatinyan AS, Gasparyan GV. Synthesis and Biological Activity of Arylcyclopentane-1-carboxylic Acids Aminoesters. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s107036321905027x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Hyland SN, Meck EA, Tortosa M, Clark TB. α-Amidoboronate esters by amide-directed alkane C H borylation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Amenós L, Trulli L, Nóvoa L, Parra A, Tortosa M. Stereospecific Synthesis of α-Hydroxy-Cyclopropylboronates from Allylic Epoxides. Angew Chem Int Ed Engl 2019; 58:3188-3192. [PMID: 30600867 DOI: 10.1002/anie.201812836] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Indexed: 11/11/2022]
Abstract
Herein, we report a catalytic and stereospecific method for the preparation of enantioenriched α-hydroxy cyclopropylboronates with control in four contiguous stereocenters. The reaction involves the borylation of readily available allylic epoxides using an inexpensive Cu(I) salt and a commercially available phosphine ligand. High diastereocontrol is achieved and different diastereomers can be selectively prepared. Functionalization of the carbon-boron bond provides access to different enantiomerically enriched trisubstituted cyclopropanes from a common intermediate.
Collapse
Affiliation(s)
- Laura Amenós
- Organic Chemistry Department, Institute for Advance Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Trulli
- Organic Chemistry Department, Institute for Advance Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Nóvoa
- Organic Chemistry Department, Institute for Advance Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alejandro Parra
- Organic Chemistry Department, Institute for Advance Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Institute for Advance Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
33
|
Amenós L, Trulli L, Nóvoa L, Parra A, Tortosa M. Stereospecific Synthesis of α‐Hydroxy‐Cyclopropylboronates from Allylic Epoxides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Amenós
- Organic Chemistry DepartmentInstitute for Advance Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Laura Trulli
- Organic Chemistry DepartmentInstitute for Advance Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Luis Nóvoa
- Organic Chemistry DepartmentInstitute for Advance Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alejandro Parra
- Organic Chemistry DepartmentInstitute for Advance Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Mariola Tortosa
- Organic Chemistry DepartmentInstitute for Advance Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
34
|
Šterman A, Sosič I, Gobec S, Časar Z. Synthesis of aminoboronic acid derivatives: an update on recent advances. Org Chem Front 2019. [DOI: 10.1039/c9qo00626e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aminoboronic acids and their derivatives are particularly useful as drugs, probes and synthons. Recent developments in their synthesis are highlighted.
Collapse
Affiliation(s)
- Andrej Šterman
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| | - Izidor Sosič
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| | - Stanislav Gobec
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| | - Zdenko Časar
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
35
|
Qi Q, Yang X, Fu X, Xu S, Negishi E. Highly Enantiospecific Borylation for Chiral α‐Amino Tertiary Boronic Esters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingqing Qi
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Xuena Yang
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Xiaoping Fu
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Shiqing Xu
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Ei‐ichi Negishi
- Herbert C. Brown Laboratories of ChemistryPurdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
36
|
Qi Q, Yang X, Fu X, Xu S, Negishi EI. Highly Enantiospecific Borylation for Chiral α-Amino Tertiary Boronic Esters. Angew Chem Int Ed Engl 2018; 57:15138-15142. [PMID: 30291671 DOI: 10.1002/anie.201809389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/30/2018] [Indexed: 12/12/2022]
Abstract
Herein we report a highly efficient and enantiospecific borylation method to synthesize a wide range of enantiopure (>99 % ee) α-amino tertiary boronic esters. The configurationally stable α-N-Boc substituted tertiary organolithium species and pinacolborane (HBpin) underwent enantiospecific borylation at -78 °C with the formation of a new stereogenic C-B bond. This reaction has a broad scope, enabling the synthesis of various α-amino tertiary boronic esters in excellent yields and, importantly, with universally excellent enantiospecificity (>99 % es) and complete retention of configuration.
Collapse
Affiliation(s)
- Qingqing Qi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Xuena Yang
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Xiaoping Fu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Shiqing Xu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ei-Ichi Negishi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
37
|
Schwamb CB, Fitzpatrick KP, Brueckner AC, Richardson HC, Cheong PHY, Scheidt KA. Enantioselective Synthesis of α-Amidoboronates Catalyzed by Planar-Chiral NHC-Cu(I) Complexes. J Am Chem Soc 2018; 140:10644-10648. [PMID: 30102526 DOI: 10.1021/jacs.8b05045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The first highly selective catalytic hydroboration of alkyl-substituted aldimines to provide medicinally relevant α-amidoboronates is disclosed. The Cu(I)-catalyzed borylation proceeds with excellent facial selectivity when a set of planar-chiral N-heterocyclic carbenes (NHCs) were employed as ligands. Density functional theory computations suggest that interactions between BPin and the planar-chiral catalyst are responsible for the observed stereoselectivity. Important pharmacophores, such as the boronate analogue of isoleucine, can be prepared using a chromatography-free protocol starting from commercially available reagents. The application of these NHC ligands in these Cu(I)-catalyzed processes offers a significant contribution to existing strategies for laboratory-scale preparation of enantioenriched α-amidoboronates.
Collapse
Affiliation(s)
- C Benjamin Schwamb
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery , Northwestern University , Silverman Hall , Evanston , Illinois 60208 , United States
| | - Keegan P Fitzpatrick
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery , Northwestern University , Silverman Hall , Evanston , Illinois 60208 , United States
| | - Alexander C Brueckner
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - H Camille Richardson
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Paul H-Y Cheong
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery , Northwestern University , Silverman Hall , Evanston , Illinois 60208 , United States
| |
Collapse
|
38
|
Chen L, Shen JJ, Gao Q, Xu S. Synthesis of cyclic chiral α-amino boronates by copper-catalyzed asymmetric dearomative borylation of indoles. Chem Sci 2018; 9:5855-5859. [PMID: 30079199 PMCID: PMC6050576 DOI: 10.1039/c8sc01815d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023] Open
Abstract
A copper(i)-catalyzed dearomative borylation of N-alkoxycarbonyl protected indole-3-carboxylates has been developed. The boron addition in this reaction occurred regioselectively at the 2-position of indoles followed by diastereoselective protonation, affording the corresponding stable cyclic chiral α-amino boronates (2-borylindolines) in moderate to good yields with excellent diastereo- and enantioselectivities. The product 2c could be used as a versatile precursor to undergo subsequent stereoselective transformations, delivering highly functionalized 2,3,3-trisubstituted chiral indolines.
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Centre for Excellence in Molecular Synthesis , Suzhou Research Institute , Lanzhou Institute of Chemical Physics , University of Chinese Academy of Sciences , Chinese Academy of Sciences , Lanzhou 730000 , China .
| | - Jun-Jian Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Centre for Excellence in Molecular Synthesis , Suzhou Research Institute , Lanzhou Institute of Chemical Physics , University of Chinese Academy of Sciences , Chinese Academy of Sciences , Lanzhou 730000 , China .
| | - Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Centre for Excellence in Molecular Synthesis , Suzhou Research Institute , Lanzhou Institute of Chemical Physics , University of Chinese Academy of Sciences , Chinese Academy of Sciences , Lanzhou 730000 , China .
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Centre for Excellence in Molecular Synthesis , Suzhou Research Institute , Lanzhou Institute of Chemical Physics , University of Chinese Academy of Sciences , Chinese Academy of Sciences , Lanzhou 730000 , China .
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
39
|
Kaldas SJ, Rogova T, Nenajdenko VG, Yudin AK. Modular Synthesis of β-Amino Boronate Peptidomimetics. J Org Chem 2018; 83:7296-7302. [PMID: 29631400 DOI: 10.1021/acs.joc.8b00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tatiana Rogova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | | | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|