1
|
Kumar S, Dey A, Maiti B, Das S, Pasuparthy SD, Padala K. A Comprehensive Exploration of the Synergistic Relationship between DMSO and Peroxide in Organic Synthesis. Top Curr Chem (Cham) 2024; 382:36. [PMID: 39548041 DOI: 10.1007/s41061-024-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
In the realm of organic synthesis, reagents can serve not only as solvents but also as synthons. Dimethyl sulfoxide (DMSO) is recognized for its efficiency in this dual capacity, enabling diverse chemical transformations. DMSO can generate various synthons, including methyl, methylene, methine, oxygen, and methyl sulfoxide, broadening the accessible compound repertoire. Activation of DMSO as a reagent relies heavily on synergies with secondary agents like peroxide, persulfate, or iodine. Recent years have witnessed a surge in innovative synthetic techniques harnessing the synergistic interplay of DMSO and peroxide, leading to environmentally friendly and cost-effective reactions with mild conditions. This review highlights the synergistic effects of DMSO and peroxides (up to 2023), detailing their activation mechanisms and the generation of various synthons, along with numerous reported derivatives. Although this topic has received considerable attention in recent years, there are numerous discrepancies and a plethora of possibilities yet to be explored. We anticipate that this review will significantly support researchers in advancing their innovations to a greater extent in the future.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India.
| | - Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sai Deepak Pasuparthy
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
2
|
Yadav P, Chatterjee D, Bhowmick S, Tiwari K, Awasthi A, Tiwari DK. Autocatalytic and DMSO-promoted regioselective synthesis of pyrimidine-fused quinolines from anilines and barbituric acids. Chem Commun (Camb) 2024; 60:12746-12749. [PMID: 39397744 DOI: 10.1039/d4cc04044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalytic and DMSO-participating regioselective synthesis of N,N-disubstituted pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones from anilines and barbituric acids has been achieved. In this newly developed one-pot tandem reaction, DMSO serves as a solvent cum methine source. Additionally, barbituric acid plays a dual role by acting as a substrate and a catalyst, making this reaction an environmentally benign approach to accessing valuable heterocycles. This method offers an auto-catalytic, additive-free, and operationally simple approach with a wide substrate scope and excellent tolerance for various functional groups. Furthermore, a few controlled experiments were conducted to gain insight into the reaction mechanism. Moreover, large-scale experiments have further enriched this methodology.
Collapse
Affiliation(s)
- Pushpendra Yadav
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, UP, India
| | - Deblina Chatterjee
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
| | - Suman Bhowmick
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad, Uttar Pradesh-201002, India
| | - Khushboo Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad, Uttar Pradesh-201002, India
| | - Annapurna Awasthi
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, UP, India
| | - Dharmendra Kumar Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow, UP 226014, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
3
|
Fajer AN, Al-Bahrani HA, Kadhum AAH, Kazemi M. Synthesis of pyrano-pyrimidines: recent advances in catalysis by magnetically recoverable nanocatalysts. Mol Divers 2024; 28:3523-3555. [PMID: 38066350 DOI: 10.1007/s11030-023-10751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2024]
Abstract
The widespread use of catalysts in chemistry in the current century, especially in multicomponent reactions, has led researchers to design catalysts with high catalytic power and which can be recycled. In recent years, most scientists and researchers of chemical science have become interested in magnetic nanocatalysts and used them to perform chemical reactions. Due to the magnetic property of this nanocatalyst, it can be separated and collected from the reaction mixture by a magnet after the reaction is complete and reused. Pyrano-pyrimidines are a group of heterocyclic compounds and important pharmaceutical compounds. Pyrano-pyrimidine derivatives are of great interest due to the wide role they play in biological activities. During the past years, various methods for the synthesis of pyrano-pyrimidines based on the use of magnetic nanocatalysts have been reported. In this review article, for the first time, we would like to focus on the reported non-magnetic materials as magnetically recoverable nanocatalysts for the synthesis of pyrano-pyrimidine derivatives. Considering the wonderful features of magnetic nanocatalysts such as simple separation and preparation, high catalytic activity and stability, we expect more articles on the synthesis of heterocycles using this type of catalyst to be published in the near future.
Collapse
Affiliation(s)
- Ali Noory Fajer
- Department Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| | - Hussein Ali Al-Bahrani
- Department of Chemistry Collage of Education for Pure Science, University of Karbala, Karbala, Iraq
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Yashmin S, A M K, Khan AT. Utilization of DMSO as a solvent-cum-reactant: synthesis of fused 2-aryl-4-methylquinolines. Org Biomol Chem 2024; 22:5608-5617. [PMID: 38910410 DOI: 10.1039/d4ob00938j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Herein, we disclose the synthesis of a variety of disubstituted fused quinoline, such as 4-methyl-2-arylbenzo[h]quinolines (3a-j), 1-methyl-3-arylbenzo[f]quinolines (3k-r), 1-methyl-3-arylnaphtho[2,3-f]quinolines (3s-x), and 2-aryl-5,7-dimethoxy-4-methylquinolines (4a-c), derivatives from the reaction of an aryl aldehyde with 1-naphthylamine (1a), 2-naphthylamine (1b), 2-aminoanthracene (1c) and 3,5-dimethoxyaniline (1d), respectively, at 80 °C in the presence of 30 mol% (±)-10-camphorsulfonic acid ((±)-CSA) using DMSO as the solvent-cum-reactant. DMSO molecules regioselectively incorporate three carbon atoms into the target molecule in this distinct reaction. The other advantages of the present protocol are that it can be performed under mild reaction conditions and does not require metal catalysts, additional additives or oxidants.
Collapse
Affiliation(s)
- Sabina Yashmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Karthik A M
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
5
|
Mandal A, Khan AT. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org Biomol Chem 2024; 22:2339-2358. [PMID: 38444342 DOI: 10.1039/d4ob00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
6
|
Teli G, Pal R, Maji L, Purawarga Matada GS, Sengupta S. Explanatory review on pyrimidine/fused pyrimidine derivatives as anticancer agents targeting Src kinase. J Biomol Struct Dyn 2024; 42:1582-1614. [PMID: 37144746 DOI: 10.1080/07391102.2023.2205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Liu F, Sohail A, Ablajan K. Metal-Free Oxidative Formation of Aryl Esters by Catalytic Coupling of Acyl and Sulfonyl Chlorides with Arylboronic Acids. J Org Chem 2024; 89:27-33. [PMID: 38096383 DOI: 10.1021/acs.joc.3c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A practical and efficient synthesis of aryl esters was developed through metal-free oxidation. This reaction employs stable and readily available acyl or sulfonyl chlorides and arylboronic acids as the starting materials and proceeds under mild reaction conditions without additional precious metal catalysts. This new strategy exhibits broad substrate tolerance and operational simplicity and gives diverse aryl esters in moderate to high yields.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Akbar Sohail
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
8
|
Moghaddam FM, Jarahiyan A, Pazoki PY. β-Ketoallylic methylsulfones synthesis via inert C(sp 3)-H bond activation by magnetic Ag-Cu MOF. Sci Rep 2023; 13:22518. [PMID: 38110516 PMCID: PMC10728156 DOI: 10.1038/s41598-023-49670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Herein, the one-pot tandem synthesis of β-ketoallylic methylsulfones has been achieved from readily available dimethyl sulfoxide and acetophenones as coupling partners in one step. In this procedure, dimethyl sulfoxide serves as a triple role including solvent, dual synthon and as an oxidant agent. The use of magnetic Ag-Cu MOF as a bimetallic catalyst is the key to the progress of the reaction due to its accessible active sites. It provides facile access to various β-ketoallylic methylsulfone derivatives from direct C(sp3)-H bond activation and functionalization of aromatic methyl ketones especially acetophenones with electron-rich and electron-poor groups. Moreover, the present work offers a synthetically powerful strategy to form products in good to excellent yields (74-96%) with the atom, step, and pot economics. It has also delivered a new chromane-4-one derivative from 2-hydroxy acetophenone with intramolecular Michael-addition of related β-ketoallyl methylsulfone product. In the final step, the electronic properties of some products have been predicted with the theoretical studies.
Collapse
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516, Tehran, Iran.
| | - Atefeh Jarahiyan
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516, Tehran, Iran
| | - Parisa Yaqubnezhad Pazoki
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516, Tehran, Iran
| |
Collapse
|
9
|
Fang F, Xia J, Quan S, Chen S, Deng GJ. Metal- and Solvent-Free Synthesis of Substituted Pyrimidines via an NH 4I-Promoted Three-Component Tandem Reaction. J Org Chem 2023; 88:14697-14707. [PMID: 37773063 DOI: 10.1021/acs.joc.3c01700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A facile and practical approach for the preparation of substituted pyrimidines from ketones, NH4OAc, and N,N-dimethylformamide dimethyl acetal has been described. This NH4I-promoted three-component tandem reaction affords a broad range of substituted pyrimidines in acceptable yields under metal- and solvent-free conditions. The present methodology features the advantages of simple and easily available starting materials, metal- and solvent-free conditions, a broad substrate scope with good functional group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. China
| | - Jie Xia
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Siying Quan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
10
|
Faraz S, Khan AT. p-TSA·H 2O catalyzed metal-free and environmentally benign synthesis of 4-aryl quinolines from arylamine, arylacetylene, and dimethyl sulfoxide. Org Biomol Chem 2023; 21:7553-7560. [PMID: 37519239 DOI: 10.1039/d3ob00993a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
An environmentally benign and metal-free synthesis of 4-aryl quinolines is reported by employing readily available arylamine, arylacetylene, and DMSO in the presence of 20 mol% p-TSA·H2O. In the present protocol, the solvent DMSO serves as a reactant cum solvent for providing the C2 carbon atom of the quinoline skeleton. Notably, the reaction proceeds effectively and efficiently without the involvement of any metal catalyst, ligand, and co-catalyst as additives and inert atmospheric reaction conditions. This method provides high atom economy and good yields, and two C-C and one C-N bonds are formed in a single step through a three-component reaction.
Collapse
Affiliation(s)
- Simra Faraz
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
11
|
Gao H, Zhou L, Wan JP, Liu Y. Rongalite as C1 Synthon in the Synthesis of Divergent Pyridines and Quinolines. J Org Chem 2023. [PMID: 37171406 DOI: 10.1021/acs.joc.3c00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rongalite has been used as a cheap and efficient carbon synthon for the synthesis of divergent N-heteroaromatics, including different pyridines and quinolines. The selective synthesis of different products can be achieved by employing enaminones or enaminones/anilines as reaction partners. In addition, compared with the reaction using conventional aldehyde synthons, rongalite displays an evident advantage in providing products with considerably higher product yields under milder conditions. The GC-MS analysis of the reaction process has been performed to probe the possible reaction mechanism.
Collapse
Affiliation(s)
- Huan Gao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Egbujor MC, Tucci P, Onyeije UC, Emeruwa CN, Saso L. NRF2 Activation by Nitrogen Heterocycles: A Review. Molecules 2023; 28:2751. [PMID: 36985723 PMCID: PMC10058096 DOI: 10.3390/molecules28062751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities. NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural-activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area.
Collapse
Affiliation(s)
- Melford C. Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Nigeria
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ugomma C. Onyeije
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka 420007, Nigeria
| | | | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
13
|
Ma JT, Chen T, Tang BC, Chen XL, Yu ZC, Zhou Y, Zhuang SY, Wu YD, Xiang JC, Wu AX. A Pummerer Reaction-Enabled Modular Synthesis of Alkyl Quinoline-3-carboxylates and 3-Arylquinolines from Amino Acids. J Org Chem 2023; 88:3760-3771. [PMID: 36821870 DOI: 10.1021/acs.joc.2c03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Concise synthesis of functionalized quinolines has received continuous research attention owing to the biological importance and synthetic potential of bicyclic N-heterocycles. However, synthetic routes to the 2,4-unsubstituted alkyl quinoline-3-carboxylate scaffold, which is an important motif in drug design, remain surprisingly limited, with modular protocols that proceed from readily available materials being even more so. We herein report an acidic I2-DMSO system that converts readily available aspartates and anilines into alkyl quinoline-3-carboxylate. This method can be extended to a straightforward synthesis of 3-arylquinolines by simply replacing the aspartates with phenylalanines. Mechanistic studies revealed that DMSO was activated by HI via a Pummerer reaction to provide the C1 synthon, while the amino acid catabolized to the C2 synthon through I2-mediated Strecker degradation. A formal [3 + 2 + 1] annulation of these two concurrently generated synthons with aniline was responsible for the selective formation of the quinoline core. The synthetic utility of this protocol was illustrated by the efficient synthesis of human 5-HT4 receptor ligand. Moreover, an unprecedented chemoselective synthesis of 2-deuterated, 3-substituted quinoline, featuring this reaction, has been established.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
14
|
Rana S, Althagafi I, Chahal M, Pratap R. Synthesis of Multifunctional Arylated Anilines and Amino‐dihydrophenanthrenes Through Arylacetonitriles Mediated Ring Transformation of 2
H
‐Pyran‐2‐ones/2‐oxo‐benzo[
h
]chromenes. ChemistrySelect 2023. [DOI: 10.1002/slct.202204905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shally Rana
- Department of Chemistry University of Delhi Delhi 110007- India
- Department of Chemistry, School of Science Indrashil University, Rajpur, Kadi, Ahmedabad-Mehsana Highway Gujarat 382740 India
| | - Ismail Althagafi
- Department of Chemistry College of Applied Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Mohit Chahal
- Department of Chemistry University of Delhi Delhi 110007- India
| | - Ramendra Pratap
- Department of Chemistry University of Delhi Delhi 110007- India
| |
Collapse
|
15
|
Catalyzed Methods to Synthesize Pyrimidine and Related Heterocyclic Compounds. Catalysts 2023. [DOI: 10.3390/catal13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review covers articles published in the period from 2010 to mid-2022 on synthetic advances in the formation of pyrimidine and related heterocyclic compounds. Special emphasis has been given to the different types of cycloadditions, taking into account the number of their components and leading to the formation of the pyrimidine ring. Due to the large number of publications on the Biginelli reaction and related reactions, this will be dealt with in a separate review in the near future.
Collapse
|
16
|
Cui HL. Recent Advances in DMSO-Based Direct Synthesis of Heterocycles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238480. [PMID: 36500564 PMCID: PMC9738701 DOI: 10.3390/molecules27238480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Besides serving as a low-toxicity, inexpensive and easily accessible solvent, dimethyl sulfoxide (DMSO) has also been extensively used as a versatile reagent for the synthesis of functionalized molecules. Dimethyl sulfoxide can not only be utilized as a carbon source, a sulfur source and an oxygen source, but also be employed as a crucial oxidant enabling various transformations. The past decade has witnessed a large number of impressive achievements on the direct synthesis of heterocycles as well as modifications of heterocyclic compounds by applying DMSO as a reagent. This review summarized the DMSO-based direct heterocycle constructions from 2012 to 2022.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| |
Collapse
|
17
|
Nadar S, Khan T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem Biol Drug Des 2022; 100:818-842. [PMID: 34914188 DOI: 10.1111/cbdd.14001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Heterocycles possessing a pyrimidine scaffold have piqued tremendous interest of organic and medicinal chemists owing to their privileged bioactivities. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities. This heterocycle, being a significant endogenous component of the body, the pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. The landscape of FDA approved drugs, presently marketed incorporating the pyrimidine scaffold continues to evolve in number and diversity. There is a tremendous surge in discovery of new targets across many diseases especially those involving emerging resistance to clinically used battery of drugs. Pyrimidine scaffolds will continue to be explored expanding their chemical space portfolio in an effort to find novel drugs impacting these targets. This review aims to provide an elaborate recapitulation of the recent trends adopted to synthesize propitious pyrimidine incorporated hits and also focuses on the clinical significance reported for functionalized pyrimidine analogues that would quintessentially aid medicinal chemists for new research explorations in this arena.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
18
|
Recent Advances in the Use of Dimethyl Sulfoxide as a Synthon in Organic Chemistry. Top Curr Chem (Cham) 2022; 380:55. [DOI: 10.1007/s41061-022-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
|
19
|
Geng M, Huang M, Kuang J, Fang W, Miao M, Ma Y. Application of N, N-Dimethylethanolamine as a One-Carbon Synthon for the Synthesis of Pyrrolo[1,2- a]quinoxalines, Quinazolin-4-ones, and Benzo[4,5]imidazoquinazolines via [5 + 1] Annulation. J Org Chem 2022; 87:14753-14762. [PMID: 36254464 DOI: 10.1021/acs.joc.2c02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of N-heterocycles composes a significant part of synthetic chemistry. In this report, a Cu(II)-catalyzed green and efficient synthesis of pyrrolo[1,2-a]quinoxaline, quinazolin-4-one, and benzo[4,5]imidazoquinazoline derivatives was developed, employing N,N-dimethylethanolamine (DMEA) as a C1 synthon. Green oxidant O2 is critical in these transformations, facilitating the formation of a key intermediate─a reactive iminium ion. The method conducted under mild conditions is compatible with a diversity of functional groups, providing an appealing alternative to the previously developed protocols.
Collapse
Affiliation(s)
- Meiqi Geng
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China.,Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Minzhao Huang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - MaoZhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| |
Collapse
|
20
|
Hyland EE, Kelly PQ, McKillop AM, Dherange BD, Levin MD. Unified Access to Pyrimidines and Quinazolines Enabled by N-N Cleaving Carbon Atom Insertion. J Am Chem Soc 2022; 144:19258-19264. [PMID: 36240487 PMCID: PMC9619406 DOI: 10.1021/jacs.2c09616] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Given
the ubiquity of heterocycles in biologically active
molecules,
transformations with the capacity to modify such molecular skeletons
with modularity remain highly desirable. Ring expansions that enable
interconversion of privileged heterocyclic motifs are especially interesting
in this regard. As such, the known mechanisms for ring expansion and
contraction determine the classes of heterocycle amenable to skeletal
editing. Herein, we report a reaction that selectively cleaves the
N–N bond of pyrazole and indazole cores to afford pyrimidines
and quinazolines, respectively. This chlorodiazirine-mediated reaction
provides a unified route to a related pair of heterocycles that are
otherwise typically prepared by divergent approaches. Mechanistic
experiments and DFT calculations support a pathway involving pyrazolium
ylide fragmentation followed by cyclization of the ring-opened diazahexatriene
intermediate to yield the new diazine core. Beyond enabling access
to valuable heteroarenes from easily prepared starting materials,
we demonstrate the synthetic utility of skeletal editing in the synthesis
of a Rosuvastatin analog as well as in an aryl vector-adjusting direct
scaffold hop.
Collapse
Affiliation(s)
- Ethan E Hyland
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Patrick Q Kelly
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander M McKillop
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
qin Z, Ma R, Ying S, Li F, Ma Y. Synthesis of substituted pyrimido[1,2‐b]indazoles through [3+2+1] cyclization of 3‐aminoindazoles, ketones and N,N‐dimethylaminoethanol as one carbon synthon. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Fanzhu Li
- Zhejiang Chinese Medical University CHINA
| | | |
Collapse
|
22
|
DMSO as C1 source under metal‐and oxidant‐free conditions: NH4SCN mediated synthesis of quinazolinone and dihydroquinazolin‐4(1H)‐one derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Shi X, Zhang Q, Wang A, Jiang T. Substrate‐Induced Synthesis of Coumarin‐Fused Quinolinones from Anilines, 4‐Hydroxycoumarins and DMSO under Air. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Shi
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| | - Qingqing Zhang
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| | - Anan Wang
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| | - Tao‐Shan Jiang
- School of Life Sciences Anhui Agricultural University 230036 Hefei People's Republic of China
| |
Collapse
|
24
|
Foley DJ, Waldmann H. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds. Chem Soc Rev 2022; 51:4094-4120. [PMID: 35506561 DOI: 10.1039/d2cs00101b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural product-inspired compound collections serve as excellent sources for the identification of new bioactive compounds to treat disease. However, such compounds must necessarily be more structurally-enriched than traditional screening compounds, therefore inventive synthetic strategies and reliable methods are needed to prepare them. Amongst the various possible starting materials that could be considered for the synthesis of natural product-inspired compounds, ketones can be especially valuable due to the vast variety of complexity-building synthetic transformations that they can take part in, their high prevalence as commercial building blocks, and relative ease of synthesis. With a view towards developing a unified synthetic strategy for the preparation of next generation bioactive compound collections, this review considers whether ketones could serve as general precursors in this regard, and summarises the opulence of synthetic transformations available for the annulation of natural product ring-systems to ketone starting materials.
Collapse
Affiliation(s)
- Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand. .,Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
25
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
26
|
Abstract
Abstract:
Dimethyl sulfoxide (DMSO) is not only a common and cheap aprotic polar solvent with low toxicity, but also serves as an efficient and multipurpose reactant and has widely been used in organic synthesis. DMSO as an important precursor can effectively introducea broad range of functional fragments into organic molecules, such as -Me, -CH, -CH2, -SMe2, -CH2SMe, -CH2SOMe, -SMe, -SO2Me, -SOMe or as O substituents, and serves as a mild oxidant in organic transformations. Many significant achievements based on DMSO as a synthon in synthetic chemistry have rapidly made over the past several years. To help researchers further understand the recent advances in the field, the review summarizes the applications of DMSO as carbon, sulfur, and oxygen sources and is used as the dual synthon in synthetic transformations.
Collapse
Affiliation(s)
- Su-qian CAI
- School of Pharmaceutical Sciences, Guilin Medical University, Guangxi Guilin 541199, P. R. China,
| | - Ke-feng ZHANG
- School of Pharmaceutical Sciences, Guilin Medical University, Guangxi Guilin 541199, P. R. China,
| | - Xiao-hua CAI
- School of Chemical Engineering, Guizhou Minzu University, Guizhou, Guiyang 550025, P. R., China
| |
Collapse
|
27
|
Yadav P, Yadav S, Awasthi A, MANDALAPARTHI PHANINDRUDU, Bhowmick S, Tiwari DK. DMSO as a Dual Carbon Synthon in One-pot Tandem Synthesis of N-alkylated Quinazolinones from Anthranilamides and Acetophenones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, efficient, metal-free, and DMSO intervened approach for the synthesis of N-alkylated quinazolinones from readily available 2-aminobenzamide and aryl methyl ketones in the presence of an oxidizing agent has...
Collapse
|
28
|
Kalari S, Shinde AU, Rode HB. Methylene-Tethered Arylsulfonation and Benzotriazolation of Aryl/Heteroaryl C-H Bonds with DMSO as a One-Carbon Surrogate. J Org Chem 2021; 86:17684-17695. [PMID: 34851649 DOI: 10.1021/acs.joc.1c01914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Selectfluor-mediated approach toward the synthesis of methylene-tethered arylsulfonation and benzotriazolation of imidazopyridines has been described. The reaction involves imidazopyridine, aryl sulfinate, or benzotriazole and dimethyl sulfoxide (DMSO) in the presence of Selectfluor, where DMSO acts as a one-carbon synthon. The protocol has been extended to the methylene-tethered arylsulfonation and benzotriazolation of β-naphthols. The mechanistic insights show that the intermediate 3-((methylthio)methyl)-2-phenylimidazo[1,2-a]pyridine is generated from imidazopyridine, DMSO, and Selectfluor. The nucleophilic displacement by the aryl sulfinate salt or benzotriazole on the intermediate afforded the product.
Collapse
Affiliation(s)
- Saradhi Kalari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Akash U Shinde
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
29
|
Guo H, Tian L, Liu Y, Wan JP. DMSO as a C 1 Source for [2 + 2 + 1] Pyrazole Ring Construction via Metal-Free Annulation with Enaminones and Hydrazines. Org Lett 2021; 24:228-233. [PMID: 34908420 DOI: 10.1021/acs.orglett.1c03879] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cascade reaction between enaminones, hydrazines, and dimethyl sulfoxide (DMSO) for the synthesis of 1,4-disubstituted pyrazoles catalyzed by molecular iodine in the presence of Selectfluor has been realized. DMSO plays a dual role as the C1 source and the reaction medium. In addition, the synthesis of 1,3,4-trisubstituted pyrazoles using aldehydes as alternative C1 building blocks has also been achieved.
Collapse
Affiliation(s)
- Haijin Guo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Lihong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
30
|
Liu H, He GC, Zhao CY, Zhang XX, Ji DW, Hu YC, Chen QA. Redox-Divergent Construction of (Dihydro)thiophenes with DMSO. Angew Chem Int Ed Engl 2021; 60:24284-24291. [PMID: 34460141 DOI: 10.1002/anie.202109026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/10/2022]
Abstract
Thiophene-based rings are one of the most widely used building blocks for the synthesis of sulfur-containing molecules. Inspired by the redox diversity of these features in nature, we demonstrate herein a redox-divergent construction of dihydrothiophenes, thiophenes, and bromothiophenes from the respective readily available allylic alcohols, dimethyl sulfoxide (DMSO), and HBr. The redox-divergent selectivity could be manipulated mainly by controlling the dosage of DMSO and HBr. Mechanistic studies suggest that DMSO simultaneously acts as an oxidant and a sulfur donor. The synthetic potentials of the products as platform molecules were also demonstrated by various derivatizations, including the preparation of bioactive and functional molecules.
Collapse
Affiliation(s)
- Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Redox‐Divergent Construction of (Dihydro)thiophenes with DMSO. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Qin Z, Ma Y, Li F. Construction of a Pyrimidine Framework through [3 + 2 + 1] Annulation of Amidines, Ketones, and N, N-Dimethylaminoethanol as One Carbon Donor. J Org Chem 2021; 86:13734-13743. [PMID: 34541847 DOI: 10.1021/acs.joc.1c01847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient, facile, and eco-friendly synthesis of pyrimidine derivatives has been developed. It involves a [3 + 2 + 1] three-component annulation of amidines, ketones, and one carbon source. N,N-Dimethylaminoethanol is oxidized through C(sp3)-H activation to provide the carbon donor. One C-C and two C-N bonds are formed during the oxidative annulation process. The reaction shows good tolerance to many important functional groups in air, making this methodology a highly versatile alternative, and significant improvement to the existing methods for structuring a pyrimidine framework, especially 4-aliphatic pyrimidines.
Collapse
Affiliation(s)
- Zemin Qin
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Fanzhu Li
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|
33
|
Qin Z, Zhang R, Ma Y, Li F. Co(II)‐Catalyzed Oxidation of
N,N
‐Dimethylaminoethanol: An Efficient Synthesis of Unsymmetrical (2,4‐) and Symmetrical (2,6‐) Diarylpyridines through Annulation of Aromatic Ketones with a Nitrogen Source. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zemin Qin
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
- School of Pharmaceutical and Chemical Engineering Taizhou University Taizhou 318000 P. R. China
| | - Ruiqin Zhang
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
| | - Yongmin Ma
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
- School of Pharmaceutical and Chemical Engineering Taizhou University Taizhou 318000 P. R. China
| | - Fanzhu Li
- School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 P. R China
| |
Collapse
|
34
|
Yu XX, Zhao P, Zhou Y, Huang C, Wang LS, Wu YD, Wu AX. Employing Arylacetylene as a Diene Precursor and Dienophile: Synthesis of Quinoline via the Povarov Reaction. J Org Chem 2021; 86:8381-8388. [PMID: 34106703 DOI: 10.1021/acs.joc.1c00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel I2-mediated Povarov reaction of arylacetylenes and anilines for the synthesis of 2,4-substituted quinolines has been developed, in which arylacetylene first acts as both a diene precursor and dienophile. This work further develops the Povarov reaction to expand the types of diene precursors. Preliminary mechanistic studies indicate that the I2/DMSO system realized the oxidative carbonylation of C(sp)-H of arylacetylene and then undergoes a [4 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
35
|
Zhang Y, Kuang J, Xiao X, Wang L, Ma Y. DMSO as a Dual Carbon Synthon and Water as Oxygen Donor for the Construction of 1,3,5-Oxadiazines from Amidines. Org Lett 2021; 23:3960-3964. [PMID: 33938756 DOI: 10.1021/acs.orglett.1c01116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A selective and efficient synthesis of diaryl 1,3,5-oxadiazines was established for the first time from simple and readily available amidines in wet DMSO. DMSO was employed as a dual carbon synthon and water offered the oxygen atom to construct the oxadiazine ring. The reaction involved two new C-N and two new C-O bond formations.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, no. 2318 Yuhangtang Road, Hangzhou311121, P.R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
| |
Collapse
|
36
|
Zhang Y, Chen R, Wang Z, Wang L, Ma Y. I 2-Catalyzed Three-Component Consecutive Reaction for the Synthesis of 3-Aroylimidazo[1,2- a]- N-Heterocycles. J Org Chem 2021; 86:6239-6246. [PMID: 33835809 DOI: 10.1021/acs.joc.1c00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient one-pot, three-component reaction has been developed for the synthesis of 3-aroylimidazo[1,2-a]-N-heterocycles from aryl ketones and 2-amino-N-heterocycles using dimethyl sulfoxide as a methylene donor. The reaction proceeds smoothly catalyzed by I2 in the presence of K2S2O8 and affords the desired products in moderate to good yields. This protocol offers significant superiority in accessing biologically active 3-aroylimidazo[1,2-a]-N-heterocycles with various substitution patterns.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
37
|
Luo R, Guo L, Liu W, Wang S. Copper-catalyzed synthesis of phenolic compounds with DMSO as the methylene source. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1902536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Run Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lina Guo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, China
| |
Collapse
|
38
|
|
39
|
Rashid HU, Martines MAU, Duarte AP, Jorge J, Rasool S, Muhammad R, Ahmad N, Umar MN. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Adv 2021; 11:6060-6098. [PMID: 35423143 PMCID: PMC8694831 DOI: 10.1039/d0ra10657g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Pyrimidines are aromatic heterocyclic compounds that contain two nitrogen atoms at positions 1 and 3 of the six-membered ring. Numerous natural and synthetic pyrimidines are known to exist. They display a range of pharmacological effects including antioxidants, antibacterial, antiviral, antifungal, antituberculosis, and anti-inflammatory. This review sums up recent developments in the synthesis, anti-inflammatory effects, and structure-activity relationships (SARs) of pyrimidine derivatives. Numerous methods for the synthesis of pyrimidines are described. Anti-inflammatory effects of pyrimidines are attributed to their inhibitory response versus the expression and activities of certain vital inflammatory mediators namely prostaglandin E2, inducible nitric oxide synthase, tumor necrosis factor-α, nuclear factor κB, leukotrienes, and some interleukins. Literature studies reveal that a large number of pyrimidines exhibit potent anti-inflammatory effects. SARs of numerous pyrimidines have been discussed in detail. Several possible research guidelines and suggestions for the development of new pyrimidines as anti-inflammatory agents are also given. Detailed SAR analysis and prospects together provide clues for the synthesis of novel pyrimidine analogs possessing enhanced anti-inflammatory activities with minimum toxicity.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | | | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand Chakdara, Dir (L) Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
40
|
Yadav P, Awasthi A, Gokulnath S, Tiwari DK. DMSO as a Methine Source in TFA-Mediated One-Pot Tandem Regioselective Synthesis of 3-Substituted-1-Aryl-1H-Pyrazolo-[3,4-b]quinolines from Anilines and Pyrazolones. J Org Chem 2021; 86:2658-2666. [DOI: 10.1021/acs.joc.0c02696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pushpendra Yadav
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005 Varanasi, Uttar Pradesh, India
| | - Annapurna Awasthi
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005 Varanasi, Uttar Pradesh, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research (IISER), Maruthamala P.O., Vithura, Thiruvananthapuram 695 551, Kerala, India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
41
|
Xiang Y, Luo P, Hao T, Xiong W, Song X, Ding Q. Copper-mediated formal [5+1] annulation of 2-vinylanilines and glyoxylic acid: A facile approach for the synthesis of 4-arylated quinolines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Choudhuri K, Pramanik M, Mal P. Noncovalent Interactions in C–S Bond Formation Reactions. J Org Chem 2020; 85:11997-12011. [DOI: 10.1021/acs.joc.0c01534] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur,
Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur,
Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur,
Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
43
|
Kour J, Venkateswarlu V, Verma PK, Hussain Y, Dubey G, Bharatam PV, Sahoo SC, Sawant SD. Oxone-DMSO Triggered Methylene Insertion and C(sp2)−C(sp3)-H−C(sp2) Bond Formation to Access Functional Bis-Heterocycles. J Org Chem 2020; 85:4951-4962. [DOI: 10.1021/acs.joc.9b03477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaspreet Kour
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vunnam Venkateswarlu
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen K. Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Yaseen Hussain
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Subash C. Sahoo
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh 160014, India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
Kharazmi A, Ghorbani‐Vaghei R, Alavinia S. Synthesis of Pyrimidine Derivatives Catalyzed by Nanomagnetic Pyridinium‐Tribromide Ionic Liquid. ChemistrySelect 2020. [DOI: 10.1002/slct.201904697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Azin Kharazmi
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Sedigheh Alavinia
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
45
|
Orozco D, Kouznetsov VV, Bermúdez A, Vargas Méndez LY, Mendoza Salgado AR, Meléndez Gómez CM. Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents. RSC Adv 2020; 10:4876-4898. [PMID: 35498276 PMCID: PMC9049580 DOI: 10.1039/c9ra09905k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Collapse
Affiliation(s)
- Dayana Orozco
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Armando Bermúdez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| | - Leonor Y Vargas Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás A. A. 1076 Bucaramanga Colombia
| | - Arturo René Mendoza Salgado
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| |
Collapse
|
46
|
Kumar S, Padala K. The recent advances in K2S2O8-mediated cyclization/coupling reactions via an oxidative transformation. Chem Commun (Camb) 2020; 56:15101-15117. [DOI: 10.1039/d0cc06036d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently the K2S2O8 mediated cyclization/coupling reactions to construct carbon–carbon/carbon–heteroatom bond via oxidative transformation is became much interesting in organic synthesis.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore
- India
| | - Kishor Padala
- Department of Chemistry
- School of Advanced Science
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
47
|
Harry NA, Ujwaldev SM, Anilkumar G. Recent advances and prospects in the metal-free synthesis of quinolines. Org Biomol Chem 2020; 18:9775-9790. [DOI: 10.1039/d0ob02000a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-free synthesis of quinolines has recently gained attention, and this review focuses on the recent advances in the metal-free synthesis of quinolines.
Collapse
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
48
|
Zhou P, Pan Y, Tan H, Liu W. I 2-DMSO-H 2O: A Metal-Free Combination System for the Oxidative Addition of Alkynes to Access ( E)-α-Iodo-β-methylsulfonylalkenes. J Org Chem 2019; 84:15662-15668. [PMID: 31663739 DOI: 10.1021/acs.joc.9b02302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple and green reaction was discovered for iodization-methylsulfoxidation of alkynes to access (E)-α-iodo-β-methylsulfonylalkenes. This is the first report for the synthesis of iodovinyl methylsulfones by employing alkynes to react with molecular iodine (I2), dimethyl sulfoxide (DMSO), and H2O. Additionally, this protocol represents a new avenue for utilizing DMSO as the source of the -SO2Me group and H2O as the "O" source for the construction of the -SO2Me group from DMSO, which is a valuable finding.
Collapse
Affiliation(s)
- Peng Zhou
- College of Chemistry , Guangdong University of Petrochemical Technology , 2 Guandu Road , Maoming 525000 , P. R. China
| | - Yupeng Pan
- Shenzhen Grubbs Institute , Southern University of Science and Technology (SUSTech) , Shenzhen 518055 , P. R. China
| | - Hua Tan
- College of Chemistry , Guangdong University of Petrochemical Technology , 2 Guandu Road , Maoming 525000 , P. R. China
| | - Weibing Liu
- College of Chemistry , Guangdong University of Petrochemical Technology , 2 Guandu Road , Maoming 525000 , P. R. China
| |
Collapse
|
49
|
Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Dimethyl Sulfoxide: Yesterday's Solvent, Today's Reagent. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901021] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran I. R. Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran I. R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran I. R. Iran
| |
Collapse
|
50
|
Huynh TV, Doan SH, Trinh KH, Ly TH, Phan ALT, Nguyen TT, Phan ANQ, Phan NTS. Metal‐Free One‐Pot Three‐Component Synthesis of Quinazoline Derivatives via Peroxide‐Mediated Direct Oxidative Amination of C(sp
3
)–H Bonds. ChemistrySelect 2019. [DOI: 10.1002/slct.201903154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tien V. Huynh
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
- Faculty of Chemical TechnologyHCMC University of Food Industry 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Viet Nam
| | - Son H. Doan
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
| | - Khang H. Trinh
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
| | - Trang H. Ly
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
- Faculty of Chemical TechnologyHCMC University of Food Industry 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Viet Nam
| | - Anh L. T. Phan
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
| | - Tung T. Nguyen
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
| | - Anh N. Q. Phan
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
| | - Nam T. S. Phan
- Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Viet Nam
| |
Collapse
|