1
|
Scaringi S, Leforestier B, Mazet C. Remote Functionalization by Pd-Catalyzed Isomerization of Alkynyl Alcohols. J Am Chem Soc 2024; 146:18606-18615. [PMID: 38941513 PMCID: PMC11240579 DOI: 10.1021/jacs.4c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
In recent years, progress has been made in the development of catalytic methods that allow remote functionalizations based on alkene isomerization. In contrast, protocols based on alkyne isomerization are comparatively rare. Herein, we report a general Pd-catalyzed long-range isomerization of alkynyl alcohols. Starting from aryl-, heteroaryl-, or alkyl-substituted precursors, the optimized system provides access preferentially to the thermodynamically more stable α,β-unsaturated aldehydes and is compatible with potentially sensitive functional groups. We showed that the migration of both π-components of the carbon-carbon triple bond can be sustained over several methylene units. Computational investigations served to shed light on the key elementary steps responsible for the reactivity and selectivity. These include an unorthodox phosphine-assisted deprotonation rather than a more conventional β-hydride elimination in the final tautomerization event.
Collapse
Affiliation(s)
| | | | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
2
|
Siriboe MG, Vargas DA, Fasan R. Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters. J Org Chem 2022. [PMID: 36542602 DOI: 10.1021/acs.joc.2c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from Amphitrite ornata was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering. Using this system, a broad range of electron-deficient vinyl esters were efficiently converted to the desired cyclopropanation products with up to 99.5:0.5 diastereomeric and enantiomeric ratios. In addition, the engineered dehaloperoxidase-based biocatalyst is able to catalyze a variety of other abiological carbene transfer reactions, including N-H/S-H carbene insertion with EDA as well as cyclopropanation with diazoacetonitrile, thus adding to the multifunctionality of this enzyme and defining it as a valuable new scaffold for the development of novel carbene transferases.
Collapse
Affiliation(s)
- Mary G Siriboe
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - David A Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| |
Collapse
|
3
|
Konik YA, Kananovich DG. Asymmetric synthesis with titanacyclopropane reagents: From early results to the recent achievements. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Liu Q, You B, Xie G, Wang X. Developments in the construction of cyclopropanols. Org Biomol Chem 2020; 18:191-204. [PMID: 31793614 DOI: 10.1039/c9ob02197c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ring-opening of cyclopropanols is one of the most active areas of research and it has been well documented in recent years owing to subsequent coupling with various partners, thus providing the facile syntheses of a large number of multifunctional compounds that may otherwise be difficult to access. Evidently, the useful cascade reaction requires easy access to diversely functionalized cyclopropanol substrates. However, developments in the construction of cyclopropanols have not received adequate attention. Herein, recent reports on the formation of cyclopropanols are summarized, and the highly stereoselective production of new promising substrates for the cyclopropanol ring-opening/cross-coupling reactions are introduced and improved syntheses of known cyclopropanols are depicted. This review may facilitate more interesting applications of the cyclopropanol ring-opening/coupling reaction in the synthesis of pharmaceutical compounds, natural products, and structurally more diversified organic synthetic intermediates.
Collapse
Affiliation(s)
- Qiang Liu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | | | | | | |
Collapse
|
5
|
Montesinos‐Magraner M, Costantini M, Ramírez‐Contreras R, Muratore ME, Johansson MJ, Mendoza A. General Cyclopropane Assembly by Enantioselective Transfer of a Redox‐Active Carbene to Aliphatic Olefins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Matteo Costantini
- Dept. of Organic ChemistryStockholm University, Arrhenius Laboratory 10691 Stockholm Sweden
| | | | - Michael E. Muratore
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg 43183 Mölndal Sweden
| | - Magnus J. Johansson
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg 43183 Mölndal Sweden
| | - Abraham Mendoza
- Dept. of Organic ChemistryStockholm University, Arrhenius Laboratory 10691 Stockholm Sweden
| |
Collapse
|
6
|
Kim T, Kassim AM, Botejue A, Zhang C, Forte J, Rozzell D, Huffman MA, Devine PN, McIntosh JA. Hemoprotein-Catalyzed Cyclopropanation En Route to the Chiral Cyclopropanol Fragment of Grazoprevir. Chembiochem 2019; 20:1129-1132. [PMID: 30666768 DOI: 10.1002/cbic.201800652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Reactions that were once the exclusive province of synthetic catalysts can increasingly be addressed using biocatalysis. Through discovery of unnatural enzyme reactions, biochemists have significantly expanded the reach of enzymatic catalysis to include carbene transfer chemistries including olefin cyclopropanation. Here we describe hemoprotein cyclopropanation catalysts derived from thermophilic bacterial globins that react with diazoacetone and an unactivated olefin substrate to furnish a cyclopropyl ketone, a previously unreported reaction for enzyme catalysts. We further demonstrate that the resulting cyclopropyl ketone can be converted to a key cyclopropanol intermediate that occurs en route to the anti-hepatitis C drug grazoprevir.
Collapse
Affiliation(s)
- Taejin Kim
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Amude M Kassim
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Ajit Botejue
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Chen Zhang
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Jared Forte
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - David Rozzell
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Mark A Huffman
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Paul N Devine
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - John A McIntosh
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| |
Collapse
|
7
|
Montesinos-Magraner M, Costantini M, Ramírez-Contreras R, Muratore ME, Johansson MJ, Mendoza A. General Cyclopropane Assembly by Enantioselective Transfer of a Redox-Active Carbene to Aliphatic Olefins. Angew Chem Int Ed Engl 2019; 58:5930-5935. [PMID: 30675970 DOI: 10.1002/anie.201814123] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/30/2022]
Abstract
Asymmetric cyclopropane synthesis currently requires bespoke strategies, methods, substrates, and reagents, even when targeting similar compounds. This approach slows down discovery and limits available chemical space. Introduced herein is a practical and versatile diazocompound and its performance in the first unified asymmetric synthesis of functionalized cyclopropanes. The redox-active leaving group in this reagent enhances the reactivity and selectivity of geminal carbene transfer. This effect allowed the asymmetric cyclopropanation of various olefins, including unfunctionalized aliphatic alkenes, that enables the three-step total synthesis of (-)-dictyopterene A. This unified synthetic approach delivers high enantioselectivities that are independent of the stereoelectronic properties of the functional groups transferred. Our results demonstrate that orthogonally differentiated diazocompounds are viable and advantageous equivalents of single-carbon chirons.
Collapse
Affiliation(s)
- Marc Montesinos-Magraner
- Dept. of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 10691, Stockholm, Sweden
| | - Matteo Costantini
- Dept. of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 10691, Stockholm, Sweden
| | | | - Michael E Muratore
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca Gothenburg, 43183, Mölndal, Sweden
| | - Magnus J Johansson
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca Gothenburg, 43183, Mölndal, Sweden
| | - Abraham Mendoza
- Dept. of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 10691, Stockholm, Sweden
| |
Collapse
|
8
|
Xu F, Kim J, Waldman J, Wang T, Devine P. Synthesis of Grazoprevir, a Potent NS3/4a Protease Inhibitor for the Treatment of Hepatitis C Virus. Org Lett 2018; 20:7261-7265. [DOI: 10.1021/acs.orglett.8b03173] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Xu
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jungchul Kim
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jacob Waldman
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tao Wang
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Paul Devine
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|