1
|
Ai C, Wang T, Bao Y, Yan S, Zhang Y, Wang JY. Assembly of functionalized gem-difluoroalkenes via photocatalytic defluorocyanoalkylation and defluoroacylation of α-CF 3 styrenes with oxime esters. Org Biomol Chem 2024. [PMID: 39469837 DOI: 10.1039/d4ob01496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report an efficient photocatalytic protocol for the defluorocyanoalkylation and defluoroacylation of α-trifluoromethyl styrenes by utilizing oxime esters as radical donors, allowing for the preparation of diverse gem-difluoroalkenes. The treatment of α-trifluoromethyl styrenes with cyclobutanone oxime esters led to the formation of distal cyano group-anchored gem-difluoroalkenes. Notably, adding K2CO3 as an inorganic base to the photocatalytic system afforded γ,γ-difluoroallylic ketones by utilizing acyl oxime esters as the acylating agents. Preliminary mechanistic investigations into this reaction pathway revealed the involvement of single-electron reduction, C-C bond cleavage initiated by iminyl radicals, radical addition, and β-fluoride elimination steps.
Collapse
Affiliation(s)
- Chan Ai
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tao Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yu Bao
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shenghu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yue Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
2
|
Tang L, Jia F, Yu R, Wei X, Zhang L, Lv G, Zhou Q. Oxidative Aminotrifluoromethylation of 1,4-Naphthoquinone. J Org Chem 2024; 89:13117-13127. [PMID: 39226437 DOI: 10.1021/acs.joc.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A strategy for convenient and precise oxidative aminotrifluoromethylation of 1,4-naphthoquinone with the Togni reagent and amines has been demonstrated via a radical process. This method allows efficient access for the preparation of a wide range of CF3-functionalized 1,4-naphthoquinones under mild conditions, and its application in late-stage modification of drug molecules is achieved. Mechanistic studies indicate that 1,4-naphthoquinone serves as both a substrate and a catalyst and that the Togni reagent plays a dual role of a substrate and an oxidant. As a result, the title reaction can take place in the dark without external catalysts and oxidants.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang 464000, China
| | - Fengjuan Jia
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ruijun Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinmeng Wei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Lufang Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Miao HJ, Zhang JH, Li W, Yang W, Xin H, Gao P, Duan XH, Guo LN. Aromatization-driven deconstructive functionalization of spiro dihydroquinazolinones via dual photoredox/nickel catalysis. Chem Sci 2024; 15:8993-8999. [PMID: 38873081 PMCID: PMC11168144 DOI: 10.1039/d4sc01111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Aromatization-driven deconstruction and functionalization of spiro dihydroquinazolinones via dual photoredox/nickel catalysis is developed. The aromatization effect was introduced to synergistically drive unstrained cyclic C-C bond cleavage, with the aim of overcoming the ring-size limitation of nitrogen-centered radical induced deconstruction of carbocycles. Herein, we demonstrate the synergistic photoredox/nickel catalyzed deconstructive cross-coupling of spiro dihydroquinazolinones with organic halides. Remarkably, structurally diverse organic halides including aryl, alkenyl, alkynyl, and alkyl bromides were compatible for the coupling. In addition, this protocol is also characterized by its mild and redox-neutral conditions, excellent functional group compatibility, high atom economy, and easy scalability. A telescoped procedure involving condensation and ring-opening/coupling was found to be accessible. This work provides a complementary strategy to the existing radical-mediated C-C bond cleavage of unstrained carbocycles.
Collapse
Affiliation(s)
- Hong-Jie Miao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Jin-Hua Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Wenke Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Wenpeng Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Hong Xin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
4
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
5
|
Zhang DL, Le ZG, Li Q, Xie ZB, Yang WW, Zhu ZQ. Visible-light-driven EDA complex-promoted cascade cyclization to construct 4-cyanoalkyl isoquinoline-1,3-diones. Chem Commun (Camb) 2024; 60:2958-2961. [PMID: 38375889 DOI: 10.1039/d4cc00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Visible-light-induced EDA complex-promoted ring-opening of cycloketone oxime esters to synthesise various cyanoalkylated products with N-methacryloyl benzamides was developed. Various radical receptors were compatible with the current reaction system to furnish diverse heterocyclic compounds. Mechanistic analysis shows that the formation of an EDA complex was crucial to the photocatalytic strategy. Importantly, 4-cyanoalkyl isoquinoline-1,3-diones were obtained in high yields by using a catalytic amount of 1,4-diazabicyclo[2.2.2]octane (DABCO) through prolonging the reaction time, which provided a practical approach to give a variety of isoquinoline-1,3-dione derivatives.
Collapse
Affiliation(s)
- Dong-Liang Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Qing Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Wen-Wen Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
6
|
Chen XL, Qin HL. Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO 2F 2). Beilstein J Org Chem 2023; 19:901-908. [PMID: 37377774 PMCID: PMC10291241 DOI: 10.3762/bjoc.19.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A SO2F2-mediated ring-opening cross-coupling of cyclobutanone oxime derivatives with alkenes was developed for the construction of a range of δ-olefin-containing aliphatic nitriles with (E)-configuration selectivity. This new method features wide substrate scope, mild conditions, and direct N-O activation.
Collapse
Affiliation(s)
- Xian-Lin Chen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
7
|
Zhang X, Xue X, Gu Z. Stereoselective Synthesis Axially Chiral Arylnitriles through Base-Induced Chirality-Relay β-Carbon Elimination of α-Hydroxyl Ketoxime Esters. Org Lett 2023; 25:3602-3606. [PMID: 37191641 DOI: 10.1021/acs.orglett.3c00805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report herein a point-to-axial chirality transfer reaction of α-hydroxyl oxime esters for the synthesis of axially chiral arylnitriles. The reaction proceeds smoothly through a base-promoted retro-benzoin condensation reaction of α-hydroxyl oxime esters, where the axial chirality is created via the C-C bond cleavage based on a proper distorted conformation of the biaryl structure induced by its stereogenic carbon center.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiaoping Xue
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
8
|
Oudeyer S, Levacher V, Beucher H, Brière JF. Recent Advances in Catalytic and Technology-Driven Radical Addition to N, N-Disubstituted Iminium Species. Molecules 2023; 28:molecules28031071. [PMID: 36770738 PMCID: PMC9921492 DOI: 10.3390/molecules28031071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Recently, radical chemistry has grown exponentially in the toolbox of organic synthetic chemists. Upon the (re)introduction of modern catalytic and technology-driven strategies, the implementation of highly reactive radical species is currently facilitated while expanding the scope of numerous synthetic methodologies. In this context, this review intends to cover the recent advances in radical-based transformations of N,N-disubstituted iminium substrates that encompass unique reactivities with respect to imines or protonated iminium salts. In particular, we have focused on the literature concerning the dipole type substrates, such as nitrones or azomethine imines, together with the chemistry of N+-X- (X = O, NR) azaarenium dipoles, which proved to be very versatile platforms in that field of research. The N-alkylazaarenium salts were been considered, which demonstrated specific reactivity profiles in radical chemistry.
Collapse
|
9
|
Liu XF, Zhang K, Wang LL, Wang H, Huang J, Zhang XT, Lu XB, Zhang WZ. Electroreductive Ring-Opening Carboxylation of Cycloketone Oxime Esters with Carbon Dioxide. J Org Chem 2022; 88:5212-5219. [PMID: 36273332 DOI: 10.1021/acs.joc.2c01816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electroreductive ring-opening carboxylation of cycloketone oxime esters with atmospheric carbon dioxide is reported. This reaction proceeded under simple constant current conditions in an undivided cell using glassy carbon as the cathode and magnesium as the sacrificial anode, providing substituted γ- and δ-cyanocarboxylic acids in moderate to good yields. Electrochemically generated cyanoalkyl radicals and cyanoalkyl anion are proposed as the key intermediates.
Collapse
Affiliation(s)
- Xiao-Fei Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Ke Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lin-Lin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - He Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jian Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xun-Ting Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
10
|
Niu YN, Xia XF. Recent developments in the synthesis of the isoquinoline-1,3(2 H,4 H)-dione by radical cascade reaction. Org Biomol Chem 2022; 20:7861-7885. [PMID: 36185038 DOI: 10.1039/d2ob01554d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, isoquinoline-1,3(2H,4H)-dione compounds have attracted extensive attention from synthetic chemists, with the aim of finding simple, mild, green and efficient synthetic methods. In this review, we summarize the diverse range of synthetic methods employing acryloyl benzamides as key substrates to furnish isoquinoline-1,3-diones using different radical precursors, such as those containing carbon, sulphur, phosphorus, nitrogen, silicon and bromine. This will stimulate the interest of readers to engage in research in this field.
Collapse
Affiliation(s)
- Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, Jiangsu, 223003, People's Republic of China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
11
|
Zou T, He Y, Liu R, Zhang Y, Wei S, Lu J, Wang J, Wang L, Fu Q, Yi D. Photoredox-neutral ring-opening pyridylation of cyclic oximes via phosphoranyl radical-mediated N-O/C-C bond cleavages and sequential radical-radical coupling. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Jia XG, Yao QW, Shu XZ. Enantioselective Reductive N-Cyclization-Alkylation Reaction of Alkene-Tethered Oxime Esters and Alkyl Iodides by Nickel Catalysis. J Am Chem Soc 2022; 144:13461-13467. [PMID: 35877185 DOI: 10.1021/jacs.2c05523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric cross-electrophile difunctionalization of tethered alkenes has become a powerful tool for the production of chiral cyclic scaffolds; however, the current studies all focus on carbocyclization reactions. Herein, we report an N-cyclization-alkylation reaction and thus showcase the potential of heterocyclization for accessing new enantioenriched cyclic architectures. This work establishes a new approach for enantioselective aza-Heck cyclization/cross-coupling sequence, which remains a long-standing unsolved challenge for the synthetic community. The reaction proceeds with primary, secondary, and a few tertiary alkyl iodides, and the use of newly defined ligands gave highly enantioenriched pyrrolines with improved molecular diversity under mild conditions. The presence of imine functionality allows for further structural variations.
Collapse
Affiliation(s)
- Xue-Gong Jia
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
13
|
Cai X, Fu J, Gu L, Cheng D, Wang H, xu X. Visible‐light‐promoted cascade reaction of acryloylbenzamides with carboxylic acids: metal‐free synthesis of isoquinolinediones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingxing Cai
- Zhejiang University of Technology College Of Chemical Engineering CHINA
| | - Jiahui Fu
- Zhejiang University of Technology College Of Chemical Engineering CHINA
| | - Li Gu
- Zhejiang University of Technology College Of Chemical Engineering CHINA
| | - Dongping Cheng
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hong Wang
- ZJUT: Zhejiang University of Technology College of Chemical Engineering CHINA
| | - xiaoliang xu
- Zhejiang University of Technology College of Chemical Engineering Chaohui 6th district 310014 Hangzhou CHINA
| |
Collapse
|
14
|
Kulthe AD, Jaiswal S, Golagani D, Mainkar PS, Akondi SM. Organophotoredox-catalyzed cyanoalkylation of 1,4-quinones. Org Biomol Chem 2022; 20:4534-4538. [PMID: 35611647 DOI: 10.1039/d2ob00753c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A visible-light-induced metal-free cyanoalkylation of 1,4-quinones under mild and redox-neutral conditions is described. This reaction proceeds at room temperature without the need of extra base or additive and is suitable for a variety of 1,4-quinones and differently substituted cyclobutanone oxime esters. Further transformation of cyano functionality to tetrazole and amine has also been demonstrated to showcase the advantage of this method to prepare drug-like molecules.
Collapse
Affiliation(s)
- Arun D Kulthe
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunidhi Jaiswal
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Golagani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
de Souza AS, Ribeiro RCB, Costa DCS, Pauli FP, Pinho DR, de Moraes MG, da Silva FDC, Forezi LDSM, Ferreira VF. Menadione: a platform and a target to valuable compounds synthesis. Beilstein J Org Chem 2022; 18:381-419. [PMID: 35529893 PMCID: PMC9039524 DOI: 10.3762/bjoc.18.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 01/26/2023] Open
Abstract
Naphthoquinones are important natural or synthetic compounds belonging to the general class of quinones. Many compounds in this class have become drugs that are on the pharmaceutical market for the treatment of various diseases. A special naphthoquinone derivative is menadione, a synthetic naphthoquinone belonging to the vitamin K group. This compound can be synthesized by different methods and it has a broad range of biological and synthetic applications, which will be highlighted in this review.
Collapse
Affiliation(s)
- Acácio S de Souza
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Dora C S Costa
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - David R Pinho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| |
Collapse
|
16
|
Hong P, Song X, Huang Z, Tan K, Wu A, Lu X. Insights into the Mechanism of Metal-Catalyzed Transformation of Oxime Esters: Metal-Bound Radical Pathway vs Free Radical Pathway. J Org Chem 2022; 87:6014-6024. [PMID: 35389656 DOI: 10.1021/acs.joc.2c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are "too reactive to be selective". Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.
Collapse
Affiliation(s)
- Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anan Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
18
|
Xu Z, Gao Y, Wang S, Zhang Q, Zhang L, Shen L. Free-Radical-Promoted Remote Unactivated C(sp3)–H Dehydrogenative Coupling Reaction of Free Alcohols with Quinone and Chromone. J Org Chem 2022; 87:3461-3467. [DOI: 10.1021/acs.joc.1c03021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Yameng Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Shanshan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Qili Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Liang Shen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| |
Collapse
|
19
|
Liu H, Yang Z, Huang G, Yu JT, Pan C. Cyanomethylative cyclization of unactivated alkenes with nitriles for the synthesis of cyano-containing ring-fused quinazolin-4(3 H)-ones. NEW J CHEM 2022. [DOI: 10.1039/d1nj05001j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of cyano-containing pyrrolo- and piperidino-quinazolinones was developed using alkyl nitriles through radical cascade addition/cyclization under metal-free conditions.
Collapse
Affiliation(s)
- Han Liu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
20
|
Guo LN, Liu L, Duan XH. Recent Advance in Iminyl Radical Triggered C–H and C–C Bond Functionalization of Oxime Esters via 1,5-HAT and β-Carbon Scission. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1545-6874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe direct functionalization of C(sp3)–H and C(sp3)–C(sp3) bonds is considered as one of the most valuable synthetic strategies because of its high efficiency and step-economy for the rapid assembly of complex molecules. However, the relatively high bond disassociation energies (BDEs) and similar chemical environment lead to large obstacles in terms of low reactivity and selectivity. Using a radical-based strategy has proved to be an efficient approach to overcome these difficulties via a hydrogen atom transfer (HAT) process for selective C(sp3)–H functionalization and β-carbon scission for C(sp3)–C(sp3) bond derivatization. Oxime esters have emerged as outstanding precursors of iminyl radicals for versatile chemical transformations. This short review summaries the recent advances in site-specific C(sp3)–H functionalization and C(sp3)–C(sp3) bond cleavage starting from oxime esters by our group and pioneering work by others, mainly focusing on the reaction design as well as the reaction mechanism.1 Introduction2 C(sp3)–H Bond Functionalization via 1,5-HAT of Acyclic Oxime Esters2.1 1,5-HAT/Cyclization2.2 1,5-HAT/C–C or C–Heteroatom Bond Formation3 C(sp3)–C(sp3) Bond Functionalization via β-Carbon Scission of Cyclic Oxime Esters3.1 β-Carbon Scission/C–C or C–Heteroatom Bond Formation3.2 β-Carbon Scission/Cyclization4 Conclusion and Outlook
Collapse
|
21
|
Wang SC, Shen YT, Zhang TS, Hao WJ, Tu SJ, Jiang B. Cyclic Oxime Esters as Deconstructive Bifunctional Reagents for Cyanoalkyl Esterification of 1,6-Enynes. J Org Chem 2021; 86:15488-15497. [PMID: 34664501 DOI: 10.1021/acs.joc.1c01972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A concise copper catalysis strategy for the addition-cyclization of cyclic oxime esters across 1,6-enynes with high stereoselectivity to generate 1-indanones bearing an all-carbon quaternary center is reported. In this process, single-electron reduction of cyclic oxime esters enables deconstructive carbon-carbon cleavage to provide a key cyanopropyl radical poised for the addition-cyclization. This reaction is redox-neutral, exhibits good functional group compatibility, and features 100% atomic utilization. This process driven by copper catalyst makes readily available cyclic oxime esters as bifunctional reagents to demonstrate convergent synthesis.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
22
|
Yang F, Zhou Q, Wang H, Tang L. Copper‐Catalyzed Cross‐Dehydrogenative Phosphorylation of 2‐Amino‐1,4‐naphthoquinones with
H
‐Phosphonates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fang Yang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Heyan Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
- Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan Xinyang 464000 P. R. China
| |
Collapse
|
23
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
24
|
Xue D, Liu R, Zhang D, Li N, Xue Y, Ge Q, Shao L. Iron-catalyzed radical cascade cyclization of oxime esters with isocyanides: synthesis of 1-cyanoalkyl isoquinolines and 6-cyanoalkyl phenanthridines. Org Biomol Chem 2021; 19:8597-8606. [PMID: 34553739 DOI: 10.1039/d1ob01556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron-catalyzed radical cascade cyclization of oxime esters with isocyanides for the synthesis of 1-cyanoalkyl isoquinolines and 6-cyanoalkyl phenanthridines has been developed. This demonstrates excellent functional group tolerance and broad substrate scope. A diverse range of potentially valuable 1-cyanoalkyl isoquinolines and 6-cyanoalkyl phenanthridines were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Dengqi Xue
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rongqi Liu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China.
| | - Denggao Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China.
| | - Ning Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China.
| | - Yijie Xue
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China.
| | - Qianwei Ge
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China.
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
25
|
Whalley DM, Seayad J, Greaney MF. Truce–Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal‐Free Arylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Whalley
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Michael F. Greaney
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
26
|
Zheng D, Jana K, Alasmary FA, Daniliuc CG, Studer A. Transition-Metal-Free Intramolecular Radical Aminoboration of Unactivated Alkenes. Org Lett 2021; 23:7688-7692. [PMID: 34542297 DOI: 10.1021/acs.orglett.1c03024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient transition-metal-free cyclizing radical aminoboration of unactivated alkenes is reported. The B2(OH)4 reagent was used as the boron source, and the interaction between B2(OH)4 and an aryloxyamide N-radical precursor enabled the chain reaction to be initiated upon irradiation in the absence of any catalyst. This transformation proceeds via cyclization of an N-radical with subsequent intermolecular C-radical borylation. The cascade shows a broad scope and provides a wide range of high-value cyclic 1,2-aminoboronic esters.
Collapse
Affiliation(s)
- Danqing Zheng
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Kalipada Jana
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, Corrensstraβe 40, 48149 Münster, Germany.,Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Whalley DM, Seayad J, Greaney MF. Truce-Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal-Free Arylation. Angew Chem Int Ed Engl 2021; 60:22219-22223. [PMID: 34370898 DOI: 10.1002/anie.202108240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/30/2023]
Abstract
The ring-opening of 3-aminocyclobutanone oximes enables easy generation of primary alkyl radicals, capable of undergoing an unprecedented strain-release, desulfonylative radical Truce-Smiles rearrangement, providing divergent access to valuable 1,3 diamines and unnatural β-amino acids. Characterized by mild conditions and wide scope of migrating species, this protocol allows the modular assembly of sp3 -aryls under transition metal-free, room-temperature conditions.
Collapse
Affiliation(s)
- David M Whalley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
28
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
29
|
Zhou N, Wu S, Kuang K, Wu M, Zhang M. Ni-Catalyzed radical cyclization of vinyl azides with cyclobutanone oxime esters to access cyanoalkyl containing quinoxalin-2(1 H)-ones. Org Biomol Chem 2021; 19:4697-4700. [PMID: 33982738 DOI: 10.1039/d1ob00610j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed cascade addition/cyclization of 2-azido-N-arylacrylamides and cyclobutanone oxime esters for the construction of 3-cyanoalkylated quinoxalin-2(1H)-ones is developed. This reaction proceeds under mild conditions with good functional group tolerance and broad substrate scope. A preliminary mechanistic experiment indicated that the cyanoalkyl radical might be involved in this transformation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
30
|
Li M, Wang CT, Bao QF, Qiu YF, Wei WX, Li XS, Wang YZ, Zhang Z, Wang JL, Liang YM. Copper-Catalyzed Radical Aryl Migration Approach for the Preparation of Cyanoalkylsulfonylated Oxindoles/Cyanoalkyl Amides. Org Lett 2021; 23:751-756. [DOI: 10.1021/acs.orglett.0c03973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Chen P, Chen Z, Xiong BQ, Liang Y, Tang KW, Xie J, Liu Y. Visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates leading to coumarins via SO2 insertion. Org Biomol Chem 2021; 19:3181-3190. [DOI: 10.1039/d1ob00142f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates with cycloketone oxime compounds for the preparation of 3-cyanoalkylsulfonylcoumarins via SO2 insertion is reported.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha
- China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
| |
Collapse
|
32
|
Chen H, Guo LN, Sun QX, Chen L, Tao JQ, Gao P. Copper-catalyzed redox neutral ketoalkylation of Csp 2–H bonds via C–C bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00882j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An efficient copper-catalyzed ketoalkylation of Csp2–H bonds with cycloalkyl silyl peroxides under mild conditions is presented. A series of Csp2–H bonds in quinoxalin-2(1H)-ones, heteroaromatic N-oxides and quinones were amenable to this protocol.
Collapse
Affiliation(s)
- He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing-Qi Tao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
33
|
Gao Y, Quan Y, Li Z, Gao L, Zhang Z, Zou X, Yan R, Qu Y, Guo K. Organocatalytic Three-Component 1,2-Cyanoalkylacylation of Alkenes via Radical Relay. Org Lett 2020; 23:183-189. [PMID: 33336577 DOI: 10.1021/acs.orglett.0c03907] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here, we report an unprecedented regioselective, intermolecular 1,2-cyanoalkylacylation of feedstock alkenes with readily available oxime esters and aldehydes by N-heterocyclic carbene (NHC) organocatalysis. The crux of this success is the exquisite control over the radical relay process by an NHC organocatalyst. This protocol offers a general platform for diversity-oriented synthesis of valuable ketonitriles under mild, transition-metal-free, and redox-neutral conditions and highlights its potential in the late-stage functionalization of pharmaceutical architectures and natural products.
Collapse
|
34
|
Azizollahi H, García-López JA. Recent Advances on Synthetic Methodology Merging C-H Functionalization and C-C Cleavage. Molecules 2020; 25:E5900. [PMID: 33322116 PMCID: PMC7764206 DOI: 10.3390/molecules25245900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
The functionalization of C-H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C-H bonds along with the cleavage of C-C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C-C bond takes place, basically attending to the scission of strained or unstrained C-C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C-H and C-C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
| | | |
Collapse
|
35
|
Jiang YX, Chen L, Ran CK, Song L, Zhang W, Liao LL, Yu DG. Visible-Light Photoredox-Catalyzed Ring-Opening Carboxylation of Cyclic Oxime Esters with CO 2. CHEMSUSCHEM 2020; 13:6312-6317. [PMID: 33017513 DOI: 10.1002/cssc.202002032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The carboxylation of cyclic oxime esters with carbon dioxide via visible-light photoredox catalysis is demonstrated for the first time. A variety of cyclic oxime esters undergo ring-opening C-C bond cleavage and carboxylation to give cyanoalkyl-containing carboxylic acids in moderate to good yields. Moreover, this methodology features mild reaction conditions (room temperature, 1 atm), wide substrate scope, good functional group tolerance as well as facile derivations of products. Mechanistic studies indicate that the benzylic radicals and anions might be the key intermediates.
Collapse
Affiliation(s)
- Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, 3663N Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
36
|
|
37
|
Recent Advances in the Synthesis of C2‐Functionalized Pyridines and Quinolines Using
N
‐Oxide Chemistry. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000910] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Sheng X, Xu Q, Lin Z, Hu Z, Pan L, Liu Q, Li Y. External Reductant‐free Stepwise [3+2] Cycloaddition/Reductive Cyclization from 2‐Nitrochalcones and Isocyanides: Synthesis of Pyrrolo[3,4‐
c
]quinoline
N
‐oxides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinyao Sheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ziwen Lin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhongyan Hu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
39
|
Abstract
This article reviews synthetic transformations involving cleavage of a carbon-carbon bond of a four-membered ring, with a particular focus on the examples reported during the period from 2011 to the end of 2019. Most significant is the progress of catalytic reactions involving oxidative addition of carbon-carbon bonds onto transition metals or β-carbon elimination of transition metal alkoxides. When they are looked at from synthetic perspectives, they offer unique and efficient methods to build complex natural products and structures that are difficult to construct by conventional methods. On the other hand, β-scission of radical intermediates has also attracted increasing attention as an alternative elementary step to cleave carbon-carbon bonds. Its site-selectivity is often complementary to that of transition metal-catalyzed reactions. In addition, Lewis acid-mediated and thermally induced ring-opening of cyclobutanone derivatives has garnered renewed attention. On the whole, these examples demonstrate unique synthetic potentials of structurally strained four-membered ring compounds for the construction of organic skeletons.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
40
|
Qin P, Sun J, Wang F, Wang J, Wang H, Zhou M. Visible‐Light‐Induced C2 Alkylation of Heterocyclic N‐Oxides with N‐Hydroxyphthalimide Esters under Metal‐Free Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pi‐Tao Qin
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing Sun
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Fei Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing‐Yun Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| |
Collapse
|
41
|
Yang F, Liu Z, Liu H, Shangguan Y, Deng H, Huang J, Xiao Y, Guo H, Zhang C. Cu-Catalysed synthesis of benzo[f]indole-2,4,9(3H)-triones by the reaction of 2-amino-1,4-napthoquinones with α-bromocarboxylates. Org Biomol Chem 2020; 18:6724-6731. [PMID: 32832951 DOI: 10.1039/d0ob00291g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalysed cascade ester amidation/radical cyclization of 2-amino-1,4-naphthoquinones with α-bromocarboxylates to afford benzo[f]indole-2,4,9(3H)-triones is described, and the reaction has a broad substrate scope and the desired products are obtained in mostly moderate to good yields. Mechanism-probing experiments indicate that the otherwise challenging radical coupling reaction of α-bromocarboxylates with 2-amino-1,4-naphthoquinones is facilitated by a 5-endo radical cyclization.
Collapse
Affiliation(s)
- Fazhou Yang
- Department of Applied Chemistry, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020; 59:19222-19228. [DOI: 10.1002/anie.202007825] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
43
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
44
|
Xin H, Duan X, Liu L, Guo L. Metal‐Free, Visible‐Light‐Induced Selective C−C Bond Cleavage of Cycloalkanones with Molecular Oxygen. Chemistry 2020; 26:11690-11694. [DOI: 10.1002/chem.202001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Hong Xin
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xin‐Hua Duan
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Le Liu
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Li‐Na Guo
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of, Condensed Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
45
|
Khairnar PV, Su YH, Chen YC, Edukondalu A, Chen YR, Lin W. Organophosphane-Catalyzed Direct β-Acylation of 4-Arylidene Pyrazolones and 5-Arylidene Thiazolones with Acyl Chlorides. Org Lett 2020; 22:6868-6872. [DOI: 10.1021/acs.orglett.0c02408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Pankaj V. Khairnar
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C
| | - Yin-Hsiang Su
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C
| | - Yung-Chang Chen
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C
| | - Athukuri Edukondalu
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C
| |
Collapse
|
46
|
Cheng WM, Shang R. Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01979] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan-Min Cheng
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Zhang B, Zhou F, Ma H, Chen L, Su J, Yuan X, Zhang J. Dehydrogenation of 2,3-Butanediol to 3-Hydroxybutanone Over CuZnAl Catalysts: Effect of Lithium Cation as Promoter. Top Catal 2020. [DOI: 10.1007/s11244-020-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Yang D, Huang H, Li MH, Si XJ, Zhang H, Niu JL, Song MP. Directed Cobalt-Catalyzed anti-Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by “Co–H” Catalysis. Org Lett 2020; 22:4333-4338. [DOI: 10.1021/acs.orglett.0c01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Meng-Hui Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
49
|
Deng Y, Zhao C, Zhou Y, Wang H, Li X, Cheng GJ, Fu J. Directing-Group-Based Strategy Enabling Intermolecular Heck-Type Reaction of Cycloketone Oxime Esters and Unactivated Alkenes. Org Lett 2020; 22:3524-3530. [DOI: 10.1021/acs.orglett.0c00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Deng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunyang Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu Zhou
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Life Sciences, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Hongwei Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xuexiang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
50
|
Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Transformation of Alkene-Tethered Oxime Ethers to Nitriles by a Traceless Directing Group Strategy. J Org Chem 2020; 85:2654-2665. [PMID: 31876416 DOI: 10.1021/acs.joc.9b02705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nickel-catalyzed transformation of alkene-tethered oxime ethers to nitriles using a traceless directing group strategy has been developed. A series of alkene-tethered oxime ethers derived from benzaldehyde and cinnamyl aldehyde derivatives were converted into the corresponding benzonitriles and cinnamonitriles in 46-98% yields using the nickel catalyst system. Control experiments showed that the alkene group tethered to an oxygen atom on the oximes via one methylene unit plays a key role as a traceless directing group during the catalysis.
Collapse
Affiliation(s)
- Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| |
Collapse
|