1
|
Hazra A, Kanji T, Banerjee P. Brønsted Acid-Catalyzed Cascade Ring-Opening/Cyclization of 3-Ethoxy Cyclobutanones to Access 2,8-Dioxabicyclo[3.3.1]nonane Derivatives. J Org Chem 2024; 89:8458-8467. [PMID: 38847792 DOI: 10.1021/acs.joc.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A cascade ring opening of 3-ethoxy cyclobutanones followed by a double cyclization strategy has been developed via Brønsted acid catalysis. A range of 2,8-dioxabicyclo[3.3.1]nonanes are obtained from various substituted naphthols in a one-pot and open flux manner. Additionally, a 15-membered macrocycle has been synthesized by ring closing metathesis as a synthetic application.
Collapse
Affiliation(s)
- Arijit Hazra
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Tanmay Kanji
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Murugesan A, Kari S, Shrestha A, Assoah B, Saravanan KM, Murugesan M, Thiyagarajan R, Candeias NR, Kandhavelu M. Methanodibenzo[ b, f][1,5]dioxocins as Novel Glutaminase Inhibitor with Anti-Glioblastoma Potential. Cancers (Basel) 2023; 15:cancers15041010. [PMID: 36831355 PMCID: PMC9954004 DOI: 10.3390/cancers15041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Glutamine metabolism is an important hallmark of several cancers with demonstrated antitumor activity in glioblastoma cancer cells (GBM). GBM cells regulate glutamine and use it as a major energy source for their proliferation through the glutaminolysis process. Enzymes, such as glutaminase in glutaminolysis, can be targeted by small-molecule inhibitors, thus exhibiting promising anticancer properties. The resistance to glutaminolysis demands the development of new therapeutic molecules to overcome drug resistance. Herein, we have reported a novel library of constrained methanodibenzo[b,f][1,5]dioxocin derivatives as glutaminase (GLS) inhibitors and their anti-GBM potential. The library consisting of seven molecules was obtained through self-condensation of 2'-hydroxyacetophenones, out of which three molecules, namely compounds 3, 5, and 6, were identified with higher binding energy values ranging between -10.2 and -9.8 kcal/mol with GLS (PDB ID; 4O7D). Pharmacological validation of these compounds also showed a higher growth inhibition effect in GBM cells than the standard drug temozolomide (TMZ). The most promising compound, 6, obeyed Lipinski's rule of five and was identified to interact with key residues Arg307, Asp326, Lys328, Lys399, and Glu403 of GLS. This compound exhibited the best cytotoxic effect with IC50 values of 63 µM and 83 µM in LN229 and SNB19 cells, respectively. The potential activation of GLS by the best-constrained dibenzo[b,f][1,5]dioxocin in the tested series increased apoptosis via reactive oxygen species production in both GBM cells, and exhibited anti-migratory and anti-proliferative properties over time in both cell lines. Our results highlight the activation mechanism of a dibenzo[b,f][1,5]dioxocin from the structural basis and demonstrate that inhibition of glutaminolysis may facilitate the pharmacological intervention for GBM treatment.
Collapse
Affiliation(s)
- Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Sana Kari
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
| | - Anita Shrestha
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
| | - Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai 600073, India
| | - Monica Murugesan
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
- Correspondence:
| |
Collapse
|
3
|
Chen G, Li H, Liang G, Pu Q, Bai L, Zhang D, Ye Y, Li Y, Zhou J, Zhou H. Facile construction of dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones via domino [4 + 2] cycloaddition/C(sp 3)-H oxidative dehydrogenation coupling reactions. Org Biomol Chem 2022; 20:9392-9396. [PMID: 36398442 DOI: 10.1039/d2ob01860h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel palladium catalyzed homodimerization of ortho-hydroxyphenyl substituted p-QMs has been developed via [4 + 2] cycloaddition/oxidative dehydrogenation coupling domino reactions. An interesting palladium catalyzed intramolecular benzyl C-H oxidation dehydrogenation to form a transannular C(sp3)-O bond was found. This protocol provided an efficient method to construct various dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones.
Collapse
Affiliation(s)
- Genhui Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hongjiao Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qian Pu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Dexin Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Ying Ye
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Zhou T, Zheng A, Zhang W, Lu X, Chen H, Tan H. Concise total syntheses of two flavans and structure revision assisted by quantum NMR calculations. Org Biomol Chem 2022; 20:4096-4100. [PMID: 35522925 DOI: 10.1039/d2ob00634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step protecting-group-free protocol for the synthesis of 3'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (1) and concise total synthesis of 4'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (8) enabled by a PTSA triggered bioinspired olefin isomerization/hemiacetalization/dehydration/[3 + 3]-type cycloaddition cascade reaction are reported. The successful synthesis of cycloflavan 8 along with GIAO 13C NMR calculations of flavan-4-ol 9 and cycloflavan 8 indicated the misassignment of the flavonoid isolated previously and realized the revision of its actual structure.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Anquan Zheng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Wenge Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Xiuxiang Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| |
Collapse
|
5
|
Fernandes RA, Kumar P, Bhowmik A, Gorve DA. Regioselective Disulfide-Catalyzed Photocatalytic Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Org Lett 2022; 24:3435-3439. [PMID: 35466681 DOI: 10.1021/acs.orglett.2c00884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work discloses a simple, efficient, and environmentally benevolent disulfide-catalyzed photocatalytic regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes. This methodology illustrates mild reaction conditions, ambient temperature, excellent regioselectivity, and compatibility with wide range of functional groups (38 examples). The method gains significance, as few reports with limited substrate scope are available for such excellent photocatalytic oxidative cleavage of conjugated dienes.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Amit Bhowmik
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
6
|
Cui X, Wang S, Lin J, Li J, Bai H, Wang X, Huang C. Biomimetic Sequential Tautomerization/Dehydration/Addition Cascade Reactions: Facile Access to Proanthocyanidin Analogues Driven by Heating. ChemistrySelect 2022. [DOI: 10.1002/slct.202104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xin Cui
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 China
| | - Shuang Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 China
| | - Junjie Lin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 China
| | - Jingpeng Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 China
| | - Hairui Bai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 China
| | - Xinghong Wang
- School of Life Sciences Yunnan University Kunming 650091 China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
7
|
Total syntheses of hyperaspidinols A and B enabled by a bioinspired diastereoselective cascade sequence. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Gharpure SJ, Jegadeesan S, Vishwakarma DS. Total synthesis of myristinins A–F and 3′-hydroxy-5,7-dimethoxy-4- O-2′-cycloflavan by iterative generation of o-quinone methides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00244b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iterative generation of o-quinone methides (o-QMs) and [4+2] cycloaddition followed by inter/intra-molecular Michael addition in a cascade sequence gave expedient access to the total synthesis of myristinins A–F and 3′-hydroxy-5,7-dimethoxy-4-O-2′-cycloflavan and their analogues, respectively.
Collapse
Affiliation(s)
- Santosh J. Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India
| | - S. Jegadeesan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India
| | | |
Collapse
|
9
|
Zheng A, Wang S, Zhou T, Chen Y, Ke X, Chen H, Tan H. Bioinspired syntheses of cryptoflavanones C and D, oboflavanones A and B, and cryptoyunnanones G and H enabled by an acid-triggered cascade sequence. Org Chem Front 2022. [DOI: 10.1039/d1qo01837j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collective total syntheses of oboflavanones A-B, cryptoflavanones C-D, and cryptoyunnanones G-H via a bioinspired acid-triggered olefin isomerization/hemiacetalization/dehydration/formal [3 + 3]-type cycloaddition cascade process are presented.
Collapse
Affiliation(s)
- Anquan Zheng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of South China Agricultural Plant Molecular Analysis, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sasa Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Tingting Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of South China Agricultural Plant Molecular Analysis, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yan Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xin Ke
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of South China Agricultural Plant Molecular Analysis, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
10
|
Zhou T, Zheng A, Huo L, Li C, Tan H, Wang S, Chen H. Total syntheses of ericifolione and its analogues via a biomimetic inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 2021; 58:270-273. [PMID: 34878459 DOI: 10.1039/d1cc06361h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Driven by bioinspiration and appreciation of the structure of ericifolione, a biomimetic tautomerization/intermolecular inverse-electron-demand hetero Diels-Alder reaction cascade sequence promoted by sodium acetate to rapidly construct sterically hindered dihydropyran scaffolds was established, which allowed the first straightforward biomimetic total syntheses of ericifolione and its analogues with high simplicity. Moreover, this methodology set the stage for the preparation of relevant natural products or derivatives.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Anquan Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Changgeng Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Sasa Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Centre for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|
11
|
Dong C, Peng W, Wang H, Zhang X, Zhang J, Tan G, Xu K, Zou Z, Tan H. Total syntheses of melodienones by redox isomerization of propargylic alcohols. Org Biomol Chem 2021; 19:5077-5081. [PMID: 34032260 DOI: 10.1039/d1ob00599e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A remarkable base-promoted methodology for the rapid construction of the (E)- and (Z)-γ-oxo-α,β-alkenoic ester skeletons from readily accessible vinyl propargylic alcohols through modified redox isomerization was uncovered. This approach manifested its high simplicity and efficiency with excellent tolerance of functional substituents, which led to the straightforward structural modifications of various natural products and efficient total syntheses of melodienone, homomelodienone, isomelodienone, and homoisomelodienone within 4 linear steps.
Collapse
Affiliation(s)
- Chunmao Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China. and Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weiwei Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China. and Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huan Wang
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China and National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Xiao Zhang
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Guishan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Haibo Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China. and National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China and Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
Zhang X, Dong C, Wu G, Huo L, Yuan Y, Hu Y, Liu H, Tan H. The Biomimetic Total Syntheses of the Antiplasmodial Tomentosones A and B. Org Lett 2020; 22:8007-8011. [PMID: 33017154 DOI: 10.1021/acs.orglett.0c02943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first biomimetic total syntheses of natural phloroglucinols tomentosones A and B and their analogues have been accomplished. The synthetic strategy primarily referred to the potential biosynthetic precursors and their possible sequence of segments assembly by chemological evolution of the structural entities and enabled rapid access of the titled compounds in a practical fashion.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Institute of Tropical Medicine, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Chunmao Dong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, People's Republic of China
| | - Guiyun Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Institute of Tropical Medicine, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yunfei Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Yingjie Hu
- Institute of Tropical Medicine, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Hongxin Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, People's Republic of China
| |
Collapse
|
14
|
Vachan BS, Karuppasamy M, Jan G, Bhuvanesh N, Maheswari CU, Sridharan V. Direct Access to Bridged Tetrahydroquinolines and Chromanes via an InCl 3-Catalyzed Sequential Three-Component Cascade. J Org Chem 2020; 85:8062-8073. [PMID: 32452689 DOI: 10.1021/acs.joc.0c00893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A sequential three-component cascade process was developed for the synthesis of bridged tetrahydroquinolines and chromanes bearing 2,6-methanobenzo[d][1,3]diazocine and 2,6-methanobenzo[g][1,3]oxazocine scaffolds, respectively, in good yields from readily available materials. The InCl3-catalyzed reaction progressed via enamine formation, Michael addition, intramolecular cyclization, and intramolecular iminium ion cyclization steps. Notably, this high atom economic approach (-2H2O) allowed the generation of four new bonds (1 C-C and 3 C-N or 1 C-C, 1 C-O and 2 C-N) and two heterocyclic rings in a single operation.
Collapse
Affiliation(s)
- B S Vachan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Muthu Karuppasamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.,Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
15
|
Heravi MM, Janati F, Zadsirjan V. Applications of Knoevenagel condensation reaction in the total synthesis of natural products. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02586-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zhang X, Wu G, Huo L, Guo X, Qiu S, Liu H, Tan H, Hu Y. The First Racemic Total Syntheses of the Antiplasmodials Watsonianones A and B and Corymbone B. JOURNAL OF NATURAL PRODUCTS 2020; 83:3-7. [PMID: 31721580 DOI: 10.1021/acs.jnatprod.8b01077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first biomimetic total syntheses of three biologically meaningful acylphloroglucinols, watsonianones A and B and corymbone B, with potent antiplasmodial activity, were performed. Their total syntheses were carried out through a diversity-oriented synthetic strategy from congener 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione with high step efficiency. The spontaneous enolization/air oxidation of the precursor 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione through a singlet O2-induced Diels-Alder reaction pathway to assemble the key biosynthetic peroxide intermediate is also discussed.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Guiyun Wu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Xueying Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Yingjie Hu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
| |
Collapse
|
17
|
Huo L, Dong C, Wang M, Lu X, Zhang W, Yang B, Yuan Y, Qiu S, Liu H, Tan H. Biomimetic Total Syntheses of Sanctis A–B with Structure Revision. Org Lett 2020; 22:934-938. [DOI: 10.1021/acs.orglett.9b04486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chunmao Dong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Miaomiao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiuxiang Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wenge Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yunfei Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
18
|
Shi L, Wang S, Huo L, Gao M, Zhang W, Lu X, Qiu S, Liu H, Tan H. Diastereoselective construction of the benzannulated spiroketal core of chaetoquadrins enabled by a regiodivergent cascade. Org Chem Front 2020. [DOI: 10.1039/d0qo00484g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A remarkable acid-mediated methodology for the regiodivergent construction of a biologically interesting tricyclic benzannulated-spiroketal skeleton with diastereomeric specificity was uncovered to efficiently access analogs of chaetoquadrins .
Collapse
Affiliation(s)
- Lili Shi
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Sasa Wang
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
| | - Luqiong Huo
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Minli Gao
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Wenge Zhang
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Xiuxiang Lu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Shengxiang Qiu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Hongxin Liu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Haibo Tan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| |
Collapse
|
19
|
Yang H, Sun HR, Xue RD, Wu ZB, Gou BB, Lei Y, Chen J, Zhou L. Selectfluor-Mediated Stereoselective [1 + 1 + 4 + 4] Dimerization of Styrylnaphthols. Org Lett 2019; 21:9829-9835. [PMID: 31820653 DOI: 10.1021/acs.orglett.9b03587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereoselective [1 + 1 + 4 + 4] dimerization of 1-styrylnaphthols has been developed by using Selectfluor as the oxidant for the first time. The reaction was compatible with various functional groups, giving a class of ethanodinaphtho[b,f][1,5]dioxocines with novel 3D skeletons. DFT calculations indicate that this method merges an intriguing stereoselective intermolecular 1 + 1 radical coupling to construct a bridged C-C bond and then an intramolecular [4 + 4] formal cycloaddition of the in situ generated o-quinone methide intermediate.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Huai-Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Rui-Di Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Zi-Bo Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Bo-Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| |
Collapse
|
20
|
Bhowmik A, Fernandes RA. Iron(III)/O 2-Mediated Regioselective Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Org Lett 2019; 21:9203-9207. [PMID: 31693382 DOI: 10.1021/acs.orglett.9b03562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple, efficient, and environmentally benevolent regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes mediated by iron(III) sulfate/O2 has been developed. The reaction offered good yields and excellent regioselectivity and showed good functional group tolerance (31 examples). The method is important, as few reports with limited substrate scope are available for such excellent oxidative cleavage of conjugated dienes.
Collapse
Affiliation(s)
- Amit Bhowmik
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , Maharashtra , India
| | - Rodney A Fernandes
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , Maharashtra , India
| |
Collapse
|
21
|
Soto M, Soengas RG, Silva AMS, Gotor-Fernández V, Rodríguez-Solla H. Temperature-Controlled Stereodivergent Synthesis of 2,2'-Biflavanones Promoted by Samarium Diiodide. Chemistry 2019; 25:13104-13108. [PMID: 31361369 DOI: 10.1002/chem.201902927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Indexed: 12/11/2022]
Abstract
In this work, the first example of a radical stereodivergent reaction directed towards the stereoselective synthesis of both (R*,R*)- and (R*,S*)-2,2'-biflavanones promoted by samarium diiodide is reported. Control experiments showed that the selectivity of this reaction was exclusively controlled by the temperature. It was possible to generate a variety of 2,2'-biflavanones bearing different substitution patterns at the aromatic ring in good-to-quantitative yields, being both stereoisomers of the desired compounds obtained with total or high control of selectivity. A mechanism that explains both the generation of the corresponding 2,2'-biflavanones and the selectivity is also discussed. The structure and stereochemistry determination of each isomer was unequivocally elucidated by single-crystal X-ray diffraction experiments.
Collapse
Affiliation(s)
- Martín Soto
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Raquel G Soengas
- Research Centre CIAIMBITAL, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vicente Gotor-Fernández
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
22
|
Assoah B, Riihonen V, Vale JR, Valkonen A, Candeias NR. Synthesis of 6,12-Disubstituted Methanodibenzo[b,f][1,5]dioxocins: Pyrrolidine Catalyzed Self-Condensation of 2′-Hydroxyacetophenones. Molecules 2019; 24:molecules24132405. [PMID: 31261870 PMCID: PMC6651863 DOI: 10.3390/molecules24132405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
The preparation of unprecedented 6,12-disubstituted methanodibenzo[b,f][1,5]dioxocins from pyrrolidine catalyzed self-condensation of 2′-hydroxyacetophenones is herein described. This method provides easy access to this highly bridged complex core, resulting in construction of two C–O and two C–C bonds, a methylene bridge and two quaternary centers in a single step. The intricate methanodibenzo[b,f][1,5]dioxocin compounds were obtained in up to moderate yields after optimization of the reaction conditions concerning solvent, reaction times and the use of additives. Several halide substituted methanodibenzo[b,f][1,5]dioxocins could be prepared from correspondent 2′-hydroxyacetophenones.
Collapse
Affiliation(s)
- Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| | - Vesa Riihonen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - João R Vale
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| |
Collapse
|
23
|
Li L, Zhu XQ, Zhang YQ, Bu HZ, Yuan P, Chen J, Su J, Deng X, Ye LW. Metal-free alkene carbooxygenation following tandem intramolecular alkoxylation/Claisen rearrangement: stereocontrolled access to bridged [4.2.1] lactones. Chem Sci 2019; 10:3123-3129. [PMID: 30996895 PMCID: PMC6429610 DOI: 10.1039/c9sc00079h] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Alkene carbooxygenation has attracted considerable attention over the past few decades as this approach provides an efficient access to various oxygen-containing molecules, especially the valuable O-heterocycles. However, examples of catalytic alkene carbooxygenation via a direct C-O cleavage are quite scarce, and the C-O cleavage in these cases is invariably initiated by transition metal-catalyzed oxidative addition. We report here a novel Brønsted acid-catalyzed intramolecular alkoxylation-initiated tandem sequence, which represents the first metal-free intramolecular alkoxylation/Claisen rearrangement. Significantly, an unprecedented Brønsted acid-catalyzed intramolecular alkene insertion into the C-O bond via a carbocation pathway was discovered. This method allows the stereocontrolled synthesis of valuable indole-fused bridged [4.2.1] lactones, providing ready access to biologically relevant scaffolds in a single synthetic step from an acyclic precursor. Moreover, such an asymmetric cascade cyclization has also been realized by employing a traceless chiral directing group. Control experiments favor the feasibility of a carbocation pathway for the process. In addition, biological tests showed that some of these newly synthesized indole-fused lactones exhibited their bioactivity as antitumor agents against different breast cancer cells, melanoma cells, and esophageal cancer cells.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Ying-Qi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Hao-Zhen Bu
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Jinyu Chen
- State Key Laboratory of Cellular Stress Biology , School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jingyi Su
- State Key Laboratory of Cellular Stress Biology , School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology , School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
24
|
Chang MY, Chen HY, Tsai YL. Intramolecular Benzannulation of 3-Sulfonyl-2-benzylchromen-4-ones: Synthesis of Sulfonyl Dibenzooxabicyclo[3.3.1]nonanes. J Org Chem 2019; 84:443-449. [PMID: 30547592 DOI: 10.1021/acs.joc.8b02726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this work, a concise route for the synthesis of sulfonyl dibenzo-oxabicyclo[3.3.1]nonanes by a two-step route is described, including (i) NaBH4/LiCl-mediated reduction of 3-sulfonyl-2-benzylchromen-4-ones and (ii) sequential BF3·OEt2-mediated intramolecular annulation of the resulting 3-sulfonyl-2-benzylchroman-4-ols. A plausible mechanism is proposed and discussed herein. This protocol provides a highly effective stereocontrolled aryl-hydroxyl Friedel-Crafts-type cross-coupling to construct the tetra- or pentacyclic bridged framework. The use of various reaction conditions is investigated for an efficient transformation.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Han-Yu Chen
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| |
Collapse
|
25
|
Novel cinnamaldehyde-based aspirin derivatives for the treatment of colorectal cancer. Bioorg Med Chem Lett 2018; 28:2869-2874. [PMID: 30037494 DOI: 10.1016/j.bmcl.2018.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of mortality worldwide. Current treatments of CRC involve anti-cancer agents with relatively good efficacy but unselectively target both cancer and non-cancer cells. Thus, there is a need to discover and develop novel CRC therapeutics that have potent anti-cancer effects, but show reduced off-target cell effects. Here, a novel series of cinnamaldehyde-based aspirin derivatives were designed and synthesized. Biological evaluation indicated that the most active compound 1f exhibited more than 10-fold increase in the anti-proliferation efficacy in HCT-8 cells compared to the parent compounds. Its effects were similarly reproduced in another CRC cell line, DLD-1, but with 7- to 11-fold less inhibitory activity in non-tumorigenic colon cells. Flow cytometry analysis showed that 1f induced cell cycle arrest and apoptosis, which was further validated with immunoblot analysis of the relative protein levels of cleaved caspase 3 and PARP as well as the ROS production in CRC cells. More so, 1f significantly inhibited the growth of implanted CRC in vivo in mouse xenograft model. Taken together, our results show that cinnamaldehyde-based aspirin derivatives such as 1f show promise as novel anti-CRC agent for further pharmaceutical development.
Collapse
|
26
|
Du JY, Ma YH, Meng FX, Chen BL, Zhang SL, Li QL, Gong SW, Wang DQ, Ma CL. Lewis Acid Catalyzed Tandem 1,4-Conjugate Addition/Cyclization of in Situ Generated Alkynyl o-Quinone Methides and Electron-Rich Phenols: Synthesis of Dioxabicyclo[3.3.1]nonane Skeletons. Org Lett 2018; 20:4371-4374. [DOI: 10.1021/acs.orglett.8b01862] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yan-Hua Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Fan-Xiao Meng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Bao-Li Chen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shao-Liang Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qian-Li Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shu-Wen Gong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Da-Qi Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
27
|
Xing JJ, Gao YN, Shi M. Phosphine-Initiated Cascade Annulation of β′-Acetoxy Allenoate and p
-Quinols: Access to Ring Fused Hexahydroindeno Furan Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiao-Jiao Xing
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Yu-Ning Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory and Institute of Elemento-organic Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|