1
|
Zhan W, Duan H, Li C. Recent Advances in Metal-Free Peptide Stapling Strategies. CHEM & BIO ENGINEERING 2024; 1:593-605. [PMID: 39974699 PMCID: PMC11835171 DOI: 10.1021/cbe.3c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 02/21/2025]
Abstract
Protein-protein interactions (PPIs) pose challenges for intervention through small molecule drugs, protein drugs, and linear peptides due to inherent limitations such as inappropriate size, poor stability, and limited membrane penetrance. The emergence of stapled α-helical peptides presents a promising avenue as potential competitors for inhibiting PPIs, demonstrating enhanced structural stability and increased tolerance to proteolytic enzymes. This review aims to provide an overview of metal-free stapling strategies involving two identical natural amino acids, two different natural amino acids, non-natural amino acids, and multicomponent reactions. The primary objective is to delineate comprehensive peptide stapling approaches and foster innovative ideation among readers by accentuating methodologies published within the past five years and elucidating evolving trends in stapled peptides.
Collapse
Affiliation(s)
- Wanglin Zhan
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Hongliang Duan
- Faculty
of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Chengxi Li
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
- Engineering
Research Center of Functional Materials Intelligent Manufacturing
of Zhejiang Province, ZJU-Hangzhou Global
Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
2
|
DiGiorno MC, Vithanage N, Victorio CG, Kreitler DF, Outlaw VK, Sawyer N. Structural Characterization of Disulfide-Linked p53-Derived Peptide Dimers. RESEARCH SQUARE 2024:rs.3.rs-4644285. [PMID: 39070635 PMCID: PMC11275974 DOI: 10.21203/rs.3.rs-4644285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Disulfide bonds provide a convenient method for chemoselective alteration of peptide and protein structure and function. We previously reported that mild oxidation of a p53-derived bisthiol peptide (CTFANLWRLLAQNC) under dilute non-denaturing conditions led to unexpected disulfide-linked dimers as the exclusive product. The dimers were antiparallel, significantly α-helical, resistant to protease degradation, and easily reduced back to the original bisthiol peptide. Here we examine the intrinsic factors influencing peptide dimerization using a combination of amino acid substitution, circular dichroism (CD) spectroscopy, and X-ray crystallography. CD analysis of peptide variants suggests critical roles for Leu6 and Leu10 in the formation of stable disulfide-linked dimers. The 1.0 Å resolution crystal structure of the peptide dimer supports these data, revealing a leucine-rich LxxLL dimer interface with canonical knobs-into-holes packing. Two levels of higher-order oligomerization are also observed in the crystal: an antiparallel "dimer of dimers" mediated by Phe3 and Trp7 residues in the asymmetric unit and a tetramer of dimers mediated by Trp7 and Leu10. In CD spectra of Trp-containing peptide variants, minima at 227 nm provide evidence for the dimer of dimers in dilute aqueous solution. Importantly, and in contrast to the original dimer model, the canonical leucine-rich core and robust dimerization of most peptide variants suggests a tunable molecular architecture to target various proteins and evaluate how folding and oligomerization impact various properties, such as cell permeability.
Collapse
|
3
|
Fischer N, Tóth A, Jancsó A, Thulstrup P, Diness F. Inducing α-Helicity in Peptides by Silver Coordination to Cysteine. Chemistry 2024; 30:e202304064. [PMID: 38456607 DOI: 10.1002/chem.202304064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Short peptide sequences consisting of two cysteine residues separated by three other amino acids display complete change from random coil to α-helical secondary structure in response to addition of Ag+ ions. The folded CXXXC/Ag+ complex involves formation of multinuclear Ag+ species and is stable in a wide pH range from below 3 to above 8. The complex is stable through reversed-phase HPLC separation as well as towards a physiological level of chloride ions, based on far-UV circular dichroism spectroscopy. In electrospray MS under acidic conditions a peptide dimer with four Ag+ ions bound was observed, and modelling based on potentiometric experiments supported this to be the dominating complex at neutral pH together with a peptide dimer with 3 Ag+ and one proton at lower pH. The complex was demonstrated to work as a N-terminal nucleation site for inducing α-helicity into longer peptides. This type of silver-mediated peptide assembly and folding may be of more general use for stabilizing not only peptide folding but also for controlling oligomerization even under acidic conditions.
Collapse
Affiliation(s)
- Niklas Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Annamária Tóth
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Attila Jancsó
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Peter Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
4
|
Pehlivan Ö, Waliczek M, Kijewska M, Stefanowicz P. Selenium in Peptide Chemistry. Molecules 2023; 28:molecules28073198. [PMID: 37049961 PMCID: PMC10096412 DOI: 10.3390/molecules28073198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
In recent years, researchers have been exploring the potential of incorporating selenium into peptides, as this element possesses unique properties that can enhance the reactivity of these compounds. Selenium is a non-metallic element that has a similar electronic configuration to sulfur. However, due to its larger atomic size and lower electronegativity, it is more nucleophilic than sulfur. This property makes selenium more reactive toward electrophiles. One of the most significant differences between selenium and sulfur is the dissociation of the Se-H bond. The Se-H bond is more easily dissociated than the S-H bond, leading to higher acidity of selenocysteine (Sec) compared to cysteine (Cys). This difference in acidity can be exploited to selectively modify the reactivity of peptides containing Sec. Furthermore, Se-H bonds in selenium-containing peptides are more susceptible to oxidation than their sulfur analogs. This property can be used to selectively modify the peptides by introducing new functional groups, such as disulfide bonds, which are important for protein folding and stability. These unique properties of selenium-containing peptides have found numerous applications in the field of chemical biology. For instance, selenium-containing peptides have been used in native chemical ligation (NCL). In addition, the reactivity of Sec can be harnessed to create cyclic and stapled peptides. Other chemical modifications, such as oxidation, reduction, and photochemical reactions, have also been applied to selenium-containing peptides to create novel molecules with unique biological properties.
Collapse
Affiliation(s)
- Özge Pehlivan
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Monika Kijewska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
6
|
de Araujo AD, Lim J, Wu KC, Hoang HN, Nguyen HT, Fairlie DP. Landscaping macrocyclic peptides: stapling hDM2-binding peptides for helicity, protein affinity, proteolytic stability and cell uptake. RSC Chem Biol 2022; 3:895-904. [PMID: 35866171 PMCID: PMC9257625 DOI: 10.1039/d1cb00231g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
Abstract
Surveying macrocycles for mimicking a helical tumor suppressor protein, resisting breakdown by proteases, and entering cancer cells.
Collapse
Affiliation(s)
- Aline D. de Araujo
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy T. Nguyen
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Chen XX, Tang Y, Wu M, Zhang YN, Chen K, Zhou Z, Fang GM. Helix-Constrained Peptides Constructed by Head-to-Side Chain Cross-Linking Strategies. Org Lett 2021; 23:7792-7796. [PMID: 34551517 DOI: 10.1021/acs.orglett.1c02820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Facile head-to-side chain cross-linking strategies are developed to generate helix-constrained peptides. In our strategies, a covalent cross-linker is incorporated at N, i+7 or N, i+1 positions to lock the peptide into a helical conformation. The described patterns of head-to-side chain cross-linking will provide new frameworks for constrained helical peptide.
Collapse
Affiliation(s)
- Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tang
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Meng Wu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Kai Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
8
|
de Araujo AD, Nguyen HT, Fairlie DP. Late-Stage Hydrocarbon Conjugation and Cyclisation in Synthetic Peptides and Proteins. Chembiochem 2021; 22:1784-1789. [PMID: 33506598 DOI: 10.1002/cbic.202000796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/07/2021] [Indexed: 12/26/2022]
Abstract
The conventional S-alkylation of cysteine relies upon using activated electrophiles. Here we demonstrate high-yielding and selective S-alkylation and S-lipidation of cysteines in unprotected synthetic peptides and proteins by using weak electrophiles and a Zn2+ promoter. Linear or branched iodoalkanes can S-alkylate cysteine in an unprotected 38-residue Myc peptide fragment and in a 91-residue miniprotein Omomyc, thus highlighting selective late-stage synthetic modifications. Metal-assisted cysteine alkylation is also effective for incorporating dehydroalanine into unprotected peptides and for peptide cyclisation via aliphatic thioether crosslinks, including customising macrocycles to stabilise helical peptides for enhanced uptake and delivery to proteins inside cells. Chemoselective and efficient late-stage Zn2+ -promoted cysteine alkylation in unprotected peptides and proteins promises many useful applications.
Collapse
Affiliation(s)
- Aline D de Araujo
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy T Nguyen
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
10
|
Horsfall AJ, Dunning KR, Keeling KL, Scanlon DB, Wegener KL, Abell AD. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. Chembiochem 2020; 21:3423-3432. [DOI: 10.1002/cbic.202000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kylie R. Dunning
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Robinson Research Institute, Adelaide Medical School The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kelly L. Keeling
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Denis B. Scanlon
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kate L. Wegener
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- School of Biological Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
11
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Moiola M, Memeo MG, Quadrelli P. Stapled Peptides-A Useful Improvement for Peptide-Based Drugs. Molecules 2019; 24:molecules24203654. [PMID: 31658723 PMCID: PMC6832507 DOI: 10.3390/molecules24203654] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022] Open
Abstract
Peptide-based drugs, despite being relegated as niche pharmaceuticals for years, are now capturing more and more attention from the scientific community. The main problem for these kinds of pharmacological compounds was the low degree of cellular uptake, which relegates the application of peptide-drugs to extracellular targets. In recent years, many new techniques have been developed in order to bypass the intrinsic problem of this kind of pharmaceuticals. One of these features is the use of stapled peptides. Stapled peptides consist of peptide chains that bring an external brace that force the peptide structure into an α-helical one. The cross-link is obtained by the linkage of the side chains of opportune-modified amino acids posed at the right distance inside the peptide chain. In this account, we report the main stapling methodologies currently employed or under development and the synthetic pathways involved in the amino acid modifications. Moreover, we report the results of two comparative studies upon different kinds of stapled-peptides, evaluating the properties given from each typology of staple to the target peptide and discussing the best choices for the use of this feature in peptide-drug synthesis.
Collapse
Affiliation(s)
- Mattia Moiola
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Misal G Memeo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Paolo Quadrelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Boknevitz K, Italia JS, Li B, Chatterjee A, Liu SY. Synthesis and characterization of an unnatural boron and nitrogen-containing tryptophan analogue and its incorporation into proteins. Chem Sci 2019; 10:4994-4998. [PMID: 31183048 PMCID: PMC6524624 DOI: 10.1039/c8sc05167d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized and incorporated into proteins.
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized through the functionalization of BN-indole. The spectroscopic properties of BN-tryptophan are reported with respect to the natural tryptophan, and the incorporation of BN-tryptophan into proteins expressed in E. coli using selective pressure incorporation is described. This work shows that a cellular system can recognize the unnatural, BN-containing tryptophan. More importantly, it presents the first example of an azaborine containing amino acid being incorporated into proteins.
Collapse
Affiliation(s)
- Katherine Boknevitz
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - James S Italia
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Bo Li
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Shih-Yuan Liu
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| |
Collapse
|
14
|
Xiao Q, Bécar NA, Brown NP, Smith MS, Stern KL, Draper SRE, Thompson KP, Price JL. Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect. Org Biomol Chem 2019; 16:8933-8939. [PMID: 30444518 DOI: 10.1039/c8ob02535e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hydrocarbon stapling and PEGylation are distinct strategies for enhancing the conformational stability and/or pharmacokinetic properties of peptide and protein drugs. Here we combine these approaches by incorporating asparagine-linked O-allyl PEG oligomers at two positions within the β-sheet protein WW, followed by stapling of the PEGs via olefin metathesis. The impact of stapling two sites that are close in primary sequence is small relative to the impact of PEGylation alone and depends strongly on PEG length. In contrast, stapling of two PEGs that are far apart in primary sequence but close in tertiary structure provides substantially more stabilization, derived mostly from an entropic effect. Comparison of PEGylation + stapling vs. alkylation + stapling at the same positions in WW reveals that both approaches provide similar overall levels of conformational stability.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Xiao Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road Zhenjiang Jiangsu 212013 China
| | - Bo Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road Zhenjiang Jiangsu 212013 China
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road Zhenjiang Jiangsu 212013 China
| |
Collapse
|
16
|
Zhang G, Barragan F, Wilson K, Levy N, Herskovits A, Sapozhnikov M, Rodríguez Y, Kelmendi L, Alkasimi H, Korsmo H, Chowdhury M, Gerona‐Navarro G. A Solid‐Phase Approach to Accessing Bisthioether‐Stapled Peptides Resulting in a Potent Inhibitor of PRC2 Catalytic Activity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gan Zhang
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
- Ph.D. Program in Chemistry The Graduate Center of The City University of New York New York NY USA
| | - Flavia Barragan
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Khadija Wilson
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Nissim Levy
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Adam Herskovits
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Milana Sapozhnikov
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Yoel Rodríguez
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
- Department of Natural Sciences Hostos Community College of The City University of New York 475 Grand Concourse Bronx NY 10451 USA
| | - Leutrim Kelmendi
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Haleem Alkasimi
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Hunter Korsmo
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Maisha Chowdhury
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
| | - Guillermo Gerona‐Navarro
- Department of Chemistry Brooklyn College of The City University of New York 2900 Bedford Avenue Brooklyn NY 11210 USA
- Ph.D. Program in Chemistry The Graduate Center of The City University of New York New York NY USA
- Ph.D. Program in Biochemistry The Graduate Center of The City University of New York New York NY USA
| |
Collapse
|
17
|
Zhang G, Barragan F, Wilson K, Levy N, Herskovits A, Sapozhnikov M, Rodríguez Y, Kelmendi L, Alkasimi H, Korsmo H, Chowdhury M, Gerona-Navarro G. A Solid-Phase Approach to Accessing Bisthioether-Stapled Peptides Resulting in a Potent Inhibitor of PRC2 Catalytic Activity. Angew Chem Int Ed Engl 2018; 57:17073-17078. [PMID: 30339297 DOI: 10.1002/anie.201810007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Indexed: 12/11/2022]
Abstract
Stapled peptides have emerged as a new class of therapeutics to effectively target intractable protein-protein interactions. Thus, efficient and versatile methods granting easy access to this class of compounds and expanding the scope(s) of the currently available ones are of great interest. Now, a solid phase approach is described for the synthesis of bisthioether stapled peptides with multiple architectures, including single-turn, double-turn, and double-stapled macrocycles. This method allows for ligation with all-hydrocarbon linkers of various lengths, avoiding the use of unnatural amino acids and expensive catalysts, and affords cyclopeptides with remarkable resistance to proteolytic degradation. The potential of this procedure is demonstrated by applying it to generate a stapled peptide that shows potent in vitro inhibition of methyltransferase activity of the polycomb repressive complex 2 (PRC2) of proteins.
Collapse
Affiliation(s)
- Gan Zhang
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA.,Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Flavia Barragan
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Khadija Wilson
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Nissim Levy
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Adam Herskovits
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Milana Sapozhnikov
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Yoel Rodríguez
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA.,Department of Natural Sciences, Hostos Community College of The City University of New York, 475 Grand Concourse, Bronx, NY, 10451, USA
| | - Leutrim Kelmendi
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Haleem Alkasimi
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Hunter Korsmo
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Maisha Chowdhury
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
| | - Guillermo Gerona-Navarro
- Department of Chemistry, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA.,Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA.,Ph.D. Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
18
|
Skowron KJ, Speltz TE, Moore TW. Recent structural advances in constrained helical peptides. Med Res Rev 2018; 39:749-770. [PMID: 30307621 DOI: 10.1002/med.21540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing protein-protein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.,Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
19
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides. Angew Chem Int Ed Engl 2018; 57:7091-7095. [DOI: 10.1002/anie.201802847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| |
Collapse
|
20
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| |
Collapse
|