1
|
Song T, Wu Y, Ren J, Wang Z. Concise syntheses of (-)-quinocarcinol methyl ester and (-)-oxa-quinocarcinol methyl ester. Org Biomol Chem 2024; 22:8724-8729. [PMID: 39387511 DOI: 10.1039/d4ob01363h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A concise synthesis of (-)-quinocarcinol methyl ester was accomplished with an overall yield of 39% through a 9-step longest linear sequence (LLS). Our synthesis features a two-step ester reduction/reductive amination sequence, a stereoselective [3 + 2] intramolecular cross-cycloaddition for the construction of bicyclo[3.2.1]octane skeletons, four simultaneous hydrogenolysis reactions in a one-pot process, and a stereoselective Krapcho decarboxylation. By following this protocol, (-)-oxa-quinocarcinol methyl ester was also achieved.
Collapse
Affiliation(s)
- Tianhang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Yifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Song T, Wu Y, Ren J, Wang Z. Formal Syntheses of (-)-Quinocarcinamide and (-)-Quinocarcin. Org Lett 2024; 26:7100-7104. [PMID: 39145720 DOI: 10.1021/acs.orglett.4c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Concise and scalable formal syntheses of (-)-quinocarcinamide and (-)-quinocarcin have been achieved in 9 steps with 9% overall yield from simple commercially available chemicals. The synthetic strategy features an ortho-regioselective Pictet-Spengler cyclization for the construction of the tetrahydroisoquinoline skeleton, a stereoselective formal intramolecular [3 + 2] cross cycloaddition of cyclopropane 1,1-diester with an imine for the construction of the 3,8-diazabicyclo[3.2.1]octane skeleton.
Collapse
Affiliation(s)
- Tianhang Song
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Yifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Jun Ren
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Zhongwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| |
Collapse
|
3
|
Scott KA, Groch JR, Bao J, Marshall CM, Allen RA, Nick SJ, Lauta NR, Williams RE, Qureshi MH, Delost MD, Njardarson JT. Minimalistic graphical presentation approach for total syntheses. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Kaur N, Kumar P, Dutt S, Banerjee P. Accessing Complex Tetrahydrofurobenzo-Pyran/Furan Scaffolds via Lewis-Acid Catalyzed Bicyclization of Cyclopropane Carbaldehydes with Quinone Methides/Esters. J Org Chem 2022; 87:7905-7918. [PMID: 35658458 DOI: 10.1021/acs.joc.2c00566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we report a straightforward one-pot synthesis of tetrahydrofurobenzopyran and tetrahydrofurobenzofuran systems via an in situ ring-expansion of the cyclopropane carbaldehydes followed by a [2 + n] cycloaddition with the quinone derivatives. The transformation not only unveils a new reaction mode of cyclopropane carbaldehydes with quinone methides/esters, but also promotes a step-efficient diastereoselective route to the sophisticatedly fused oxygen tricycles that can be further dehydrogenated to access the valued dihydro-2H-furo[2,3-b]chromene frameworks.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Shiv Dutt
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Wang YQ, Xu K, Min L, Li CC. Asymmetric Total Syntheses of Hypoestin A, Albolic Acid, and Ceroplastol II. J Am Chem Soc 2022; 144:10162-10167. [PMID: 35657330 DOI: 10.1021/jacs.2c04633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first asymmetric total synthesis of bioactive diterpenoid hypoestin A with an unprecedented [5-8-5-3] tetracyclic skeleton is accomplished in 15 steps from commercially available (R)-limonene. Furthermore, the second asymmetric total syntheses of sesterterpenoids albolic acid and ceroplastol II in 21 steps are also reported. The synthetically challenging and highly functionalized [X-8-5] (X = 5 or 7) tricarbocyclic ring systems found in hypoestin A, albolic acid, ceroplastol II, and schindilactone A, as well as other natural products, are efficiently and directly constructed via a unique intramolecular Pauson-Khand reaction of an allene-yne. This work represents the first reported use of the Pauson-Khand reaction to access synthetically challenging eight-membered-ring systems in natural product synthesis.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kunhua Xu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Liu H, Tian L, Wang H, Li ZQ, Zhang C, Xue F, Feng C. A novel type of donor-acceptor cyclopropane with fluorine as the donor: (3 + 2)-cycloadditions with carbonyls. Chem Sci 2022; 13:2686-2691. [PMID: 35340862 PMCID: PMC8890111 DOI: 10.1039/d2sc00302c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
gem-Difluorocyclopropane diester is disclosed as a new type of donor–acceptor cyclopropane, which smoothly participates in (3 + 2)-cycloadditions with various aldehydes and ketones. This work represents the first application of gem-difluorine substituents as an unconventional donor group for activating cyclopropane substrates in catalytic cycloaddition reactions. With this method, a wide variety of densely functionalized gem-difluorotetrahydrofuran skeletons, which are otherwise difficult to prepare, could be readily assembled in high yields under mild reaction conditions. Computational studies show that the cleavage of the C–C bond between the difluorine and diester moieties occurs upon a SN2-type attack of the carbonyl oxygen. A new type of donor–acceptor cyclopropane with gem-difluorine as an unconventional donor group undergoes (3 + 2)-cycloadditions with various aldehydes/ketones, affording densely functionalized gem-difluorotetrahydrofurans.![]()
Collapse
Affiliation(s)
- Haidong Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Hui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Zhi-Qiang Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Chi Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University Nanjing 210037 China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
7
|
Selaković Ž, Nikolić AM, Ajdačić V, Opsenica IM. Application of Transition Metal‐Catalyzed Decarbonylation of Aldehydes in the Total Synthesis of Natural Products. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Života Selaković
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
| | - Andrea M. Nikolić
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
| | - Vladimir Ajdačić
- Innovative Centre Faculty of Chemistry, Ltd. Studentski trg 12–16 11158 Belgrade Serbia
| | - Igor M. Opsenica
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
- Department of Organic Chemistry University of Belgrade – Faculty of Chemistry PO Box 51, Studentski trg 16 11158 Belgrade Serbia
| |
Collapse
|
8
|
Cui Y, Ren J, Lv J, Wang Z. Studies toward the Total Syntheses of Calyciphylline D-Type Daphniphyllum Alkaloids. Org Lett 2021; 23:9189-9193. [PMID: 34791884 DOI: 10.1021/acs.orglett.1c03497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient construction of an aza-[5.7.6.5] tetracyclic core structure of calyciphylline D-type Daphniphyllum alkaloids has been achieved. The synthetic route features a diastereoselective cyclopropanation, efficient construction of the core bridged 8-aza-[3.2.1]octane skeleton through a [3 + 2] IMCC strategy, oxidative dearomatization of phenol, and gram-scale preparation in each step.
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
9
|
Kumar Palli K, Reddy Anugu R, Chandrasekhar S. Total Synthesis of (−)‐4‐
epi
‐Englerin A. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kishore Kumar Palli
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Raghunath Reddy Anugu
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Abstract
An efficient and convergent first total syntheses of (±)-japonicol B and (-)-japonicol C have been completed. The notable points of the synthetic route are Lewis-acid-catalyzed Friedel-Crafts reaction for one pot C-C and C-O bond formations resulting in construction of the tricyclic meroterpenoid skeleton, one pot Pd(OH)2/C-catalyzed isomerization/hydrogenation, and site selective sp3 C-H oxidation.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| |
Collapse
|
11
|
Ahlburg NL, Jones PG, Werz DB. cis-Selective, Enantiospecific Addition of Donor-Acceptor Cyclopropanes to Activated Alkenes: An Iodination/Michael-Cyclization Cascade. Org Lett 2020; 22:6404-6408. [PMID: 32806195 DOI: 10.1021/acs.orglett.0c02210] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present a versatile method for the enantiospecific, cis-diastereoselective intermolecular and intramolecular cycloaddition of donor-acceptor cyclopropanes to electron-poor alkenes with cyclic acceptor groups to afford highly substituted spirocyclopentanes in good to excellent yields. The reaction can be applied to biologically interesting scaffolds, including barbiturates and isoxazolones. Mechanistic investigations were undertaken to explain the unusual diastereoselectivity and enantiospecificity; these suggest an iodination/Michael-cyclization cascade.
Collapse
|
12
|
Lücht A, Kreft A, Jones PG, Werz DB. Ketenedithioacetals as Surrogates for the Formal Insertion of Ketenes into Donor–Acceptor Cyclopropanes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alexander Lücht
- Institute of Organic Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Alexander Kreft
- Institute of Organic Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institute of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
13
|
Dey R, Rajput S, Banerjee P. Metal-free domino Cloke-Wilson rearrangement-hydration-dimerization of cyclopropane carbaldehydes: A facile access to oxybis(2-aryltetrahydrofuran) derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Mou SB, Xiao W, Wang HQ, Wang SJ, Xiang Z. Syntheses of Epoxyguaiane Sesquiterpenes (−)-Englerin A, (−)-Oxyphyllol, (+)-Orientalol E, and (+)-Orientalol F: A Synthetic Biology Approach. Org Lett 2020; 22:1976-1979. [DOI: 10.1021/acs.orglett.0c00325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Su-Jing Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
15
|
Siemon T, Wang Z, Bian G, Seitz T, Ye Z, Lu Y, Cheng S, Ding Y, Huang Y, Deng Z, Liu T, Christmann M. Semisynthesis of Plant-Derived Englerin A Enabled by Microbe Engineering of Guaia-6,10(14)-diene as Building Block. J Am Chem Soc 2020; 142:2760-2765. [PMID: 31999448 DOI: 10.1021/jacs.9b12940] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report a short semisynthesis of the potent transient receptor potential canonical (TRPC) channel agonist englerin A (EA) and the related guaianes oxyphyllol and orientalol E. The guaia-6,10(14)-diene starting material was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and was produced with high titers. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis providing an efficient and economical method for producing EA and analogues.
Collapse
Affiliation(s)
- Thomas Siemon
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Berlin 14195 , Germany
| | - Zhangqian Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Tobias Seitz
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Berlin 14195 , Germany
| | - Ziling Ye
- J1 Biotech Co., Ltd. , Wuhan , China
| | - Yan Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Shu Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Yunkun Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Yanglei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China.,Hubei Engineering Laboratory for Synthetic Microbiology , Wuhan Institute of Biotechnology , Wuhan , China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences , Wuhan University , Wuhan , China.,Hubei Engineering Laboratory for Synthetic Microbiology , Wuhan Institute of Biotechnology , Wuhan , China
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Berlin 14195 , Germany
| |
Collapse
|
16
|
Facile synthesis of spirosubstituted cyclopropanes through reaction of electron-deficient olefins and 1,3-indandione. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Xia M, Song L, Li F, Hou Y, Shi Z, Cao X. Construction of Fused‐oxa‐[n.2.1] Skeletons by Tandem Intramolecular [3+2] Cycloaddition/O‐H Insertion/Ester Exchange of Cyclopropanes with Diazocarbonyls. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Miao‐Miao Xia
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 Peoples's Republic of China
| | - Le‐Le Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 Peoples's Republic of China
| | - Feng‐Xing Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 Peoples's Republic of China
| | - Yan‐Ni Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 Peoples's Republic of China
| | - Zi‐Fa Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 Peoples's Republic of China
| | - Xiao‐Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 Peoples's Republic of China
| |
Collapse
|
18
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Hu X, Musacchio AJ, Shen X, Tao Y, Maimone TJ. Allylative Approaches to the Synthesis of Complex Guaianolide Sesquiterpenes from Apiaceae and Asteraceae. J Am Chem Soc 2019; 141:14904-14915. [PMID: 31448610 DOI: 10.1021/jacs.9b08001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With hundreds of unique members isolated to date, guaianolide lactones represent a particularly prolific class of terpene natural products. Given their extensive documented therapeutic properties and fascinating chemical structures, these metabolites have captivated the synthetic chemistry community for many decades. As a result of divergent biosynthetic pathways, which produce a wide array of stereochemical and oxidative permutations, a unifying synthetic pathway to this broad family of natural products is challenging. Herein we document the evolution of a chiral-pool-based synthetic program aimed at accessing an assortment of guaianolides, particularly those from the plant family Apiaceae as well as Asteraceae, members of which possess distinct chemical substructures and necessitate deviating synthetic platforms. An initial route employing the linear monoterpene linalool generated a lower oxidation state guaianolide but was not compatible with the majority of family members. A double-allylation disconnection using a carvone-derived fragment was then developed to access first an Asteraceae-type guaianolide and then various Apiaceae congeners. Finally, using these findings in conjunction with a tandem polyoxygenation cascade, we developed a pathway to highly oxygenated nortrilobolide. A variety of interesting observations in metal-mediated aldehyde allylation and alkene polyoxygenation are reported and discussed.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
20
|
Sun W, Peng C, Yao Z, Xu F. Diastereoselective synthesis of α-dicarbonyl cyclopropanes via a lanthanide amide-catalysed reaction. Org Biomol Chem 2019; 17:6620-6628. [PMID: 31232412 DOI: 10.1039/c9ob00732f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide bis(trimethylsilyl)amides, [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3, were used as efficient catalysts for a one-pot reaction of α-ketoesters, dialkyl phosphite, and activated alkenes to produce α-dicarbonyl cyclopropanes in moderate to high yields. The reaction was stereoselective and the two adjacent carbonyls linked to the cyclopropane were in the cis-configuration. The high efficiency of the lanthanide amide in catalysing the reaction is the result of the cooperation between the lanthanide metal centre and the N(SiMe3)2 anion.
Collapse
Affiliation(s)
- Wenxi Sun
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Cheng Peng
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhigang Yao
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Fan Xu
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
21
|
Guo L, Plietker B. β‐Ketoesters as Mono‐ or Bisnucleophiles: A Concise Enantioselective Total Synthesis of (−)‐Englerin A and B. Angew Chem Int Ed Engl 2019; 58:8346-8350. [DOI: 10.1002/anie.201900401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Guo
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Bernd Plietker
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
22
|
Guo L, Plietker B. β‐Ketoesters as Mono‐ or Bisnucleophiles: A Concise Enantioselective Total Synthesis of (−)‐Englerin A and B. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Guo
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Bernd Plietker
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
23
|
Dey R, Banerjee P. Metal‐Free Ring Opening Cyclization of Cyclopropane Carbaldehydes and
N
‐Benzyl Anilines: An Eco‐Friendly Access to Functionalized Benzo[
b
]azepine Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raghunath Dey
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar Punjab-140001 India
| | - Prabal Banerjee
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar Punjab-140001 India
| |
Collapse
|
24
|
Wang MS, Wang Z, Chen W, Yang X, Zhang H. Synthesis of Oxa-Bridged Medium-Sized Carbocyclic Rings via Prins Cyclization. Org Lett 2019; 21:1881-1884. [PMID: 30816720 DOI: 10.1021/acs.orglett.9b00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report a new method for the synthesis of oxa-bridged carbocyclic units based on intramolecular Prins reaction of dioxinones. Our new synthetic approach is flexible and practical and has been successfully applied to the preparation of highly functionalized seven-, eight-, and nine-membered carbocycles. The potential utility of this approach has also been demonstrated in a model study toward construction of the 7,8-fused ring system presented in neoabyssomicin D.
Collapse
Affiliation(s)
- Min-Shou Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Zheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , P. R. China
| |
Collapse
|
25
|
Hagihara S, Hanaya K, Sugai T, Shoji M. Syntheses of Englerin A, a Potent Renal Cancer Inhibitor. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuichi Hagihara
- Department of Pharmaceutical SciencesKeio University 1-5-30 Shibakoen, Minato-ku Tokyo 105-8512 Japan
| | - Kengo Hanaya
- Department of Pharmaceutical SciencesKeio University 1-5-30 Shibakoen, Minato-ku Tokyo 105-8512 Japan
| | - Takeshi Sugai
- Department of Pharmaceutical SciencesKeio University 1-5-30 Shibakoen, Minato-ku Tokyo 105-8512 Japan
| | - Mitsuru Shoji
- Department of Pharmaceutical SciencesKeio University 1-5-30 Shibakoen, Minato-ku Tokyo 105-8512 Japan
- Department Pharmaceutical SciencesYokohama University of Pharmacy 601 Matano-cho, Totsuka-ku Yokohama 245-0066 Japan
| |
Collapse
|
26
|
Ivanova OA, Andronov VA, Vasin VS, Shumsky AN, Rybakov VB, Voskressensky LG, Trushkov IV. Expanding the Reactivity of Donor-Acceptor Cyclopropanes: Synthesis of Benzannulated Five-Membered Heterocycles via Intramolecular Attack of a Pendant Nucleophilic Group. Org Lett 2018; 20:7947-7952. [PMID: 30517005 DOI: 10.1021/acs.orglett.8b03491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lewis-acid-induced domino transformations of donor-acceptor cyclopropanes, possessing a nucleophilic center embedded in a donor group, into functionalized 2,3-dihydrobenzo[ b]furans and 2,3-dihydrobenzo[ b]thiophenes are reported herein. An unusual switch of the electrophilic center in the three-membered ring, from the atom bearing a donor substituent to an unsubstituted carbon atom, was achieved by a judicious choice of Lewis acid, which induces the isomerization of a cyclopropane to an electrophilic alkene, and the length of linker, connecting a nucleophilic moiety and the small ring.
Collapse
Affiliation(s)
- Olga A Ivanova
- Department of Chemistry , M. V. Lomonosov Moscow State University , Leninskie gory 1-3 , Moscow 119991 , Russian Federation
| | - Vladimir A Andronov
- Department of Chemistry , M. V. Lomonosov Moscow State University , Leninskie gory 1-3 , Moscow 119991 , Russian Federation
| | - Vladimir S Vasin
- Laboratory of Chemical Synthesis , Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology , Samory Mashela 1 , Moscow 117997 , Russian Federation
| | - Alexey N Shumsky
- N. M. Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , Kosygina 4 , Moscow 119334 , Russian Federation
| | - Victor B Rybakov
- Department of Chemistry , M. V. Lomonosov Moscow State University , Leninskie gory 1-3 , Moscow 119991 , Russian Federation
| | - Leonid G Voskressensky
- Faculty of Science , RUDN University , Miklukho-Maklaya 6 , Moscow 117198 , Russian Federation
| | - Igor V Trushkov
- Laboratory of Chemical Synthesis , Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology , Samory Mashela 1 , Moscow 117997 , Russian Federation.,Faculty of Science , RUDN University , Miklukho-Maklaya 6 , Moscow 117198 , Russian Federation
| |
Collapse
|