1
|
Li CT, Qi LJ, Liu LG, Ge C, Lu X, Ye LW, Zhou B. Asymmetric formal C-C bond insertion into aldehydes via copper-catalyzed diyne cyclization. Nat Commun 2023; 14:7058. [PMID: 37923708 PMCID: PMC10624849 DOI: 10.1038/s41467-023-42805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
The formal C-C bond insertion into aldehydes is an attractive methodology for the assembly of homologated carbonyl compounds. However, the homologation of aldehydes has been limited to diazo approach and the enantioselective reaction was rarely developed. Herein, we report an asymmetric formal C-C bond insertion into aldehydes through diyne cyclization strategy. In the presence of Cu(I)/SaBOX catalyst, this method leads to the efficient construction of versatile axially chiral naphthylpyrroles in moderate to excellent yields with good to excellent enantioselectivities. This protocol represents a rare example of asymmetric formal C-C bond insertion into aldehydes using non-diazo approach. The combined experimental and computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity and stereoselectivity. Notably, the chiral phosphine ligand derived from synthesized axially chiral skeleton was proven to be applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin-Jun Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chang Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Zhu B, He J, Zou K, Li A, Zhang C, Zhao J, Cao H. Base-Catalyzed One-Pot Synthesis of 2,3,6-Substituted Pyridines. J Org Chem 2023; 88:11450-11459. [PMID: 37505995 DOI: 10.1021/acs.joc.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A three-component reaction catalyzed by base was established, which mainly consisted of ynals, isocyanates, amines and alcohols. This strategy provides a wide range of substrates and represents a simple process for the preparation of different pyridine derivatives in good yields with high regioselectivities.
Collapse
Affiliation(s)
- Baofu Zhu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| | - Jiaming He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| | - Kai Zou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| | - Anquan Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. China
| |
Collapse
|
3
|
Wang Q, Shih JL, Tsui KY, Laconsay CJ, Tantillo DJ, May JA. Experimental and Computational Mechanistic Study of Carbonazidate-Initiated Cascade Reactions. J Org Chem 2022; 87:8983-9000. [PMID: 35758036 DOI: 10.1021/acs.joc.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of Huisgen cyclization or nitrene/carbene alkyne cascade reactions with different types of termination were investigated. Accessible nitrene precursors were assessed, and carbonazidates were found to be the only effective initiators. Solvents, terminal alkynyl substituents, and catalysts can all impact the reaction outcome. Study of the mechanism both computationally (by density functional theory) and experimentally revealed relevant intermediates and plausible reaction pathways.
Collapse
Affiliation(s)
- Qinxuan Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Jiun-Le Shih
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Ka Yi Tsui
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
4
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
5
|
Cao L, Zhou P, Hu J, Huang L, Feng H. Accessing N‐Propargyl Amino Alcohols through Cu(I)‐Catalyzed A
3
‐Coupling/Annulation and Bi(III)‐Promoted Ring‐Opening. ChemistrySelect 2022. [DOI: 10.1002/slct.202200200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Leilei Cao
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Pengyu Zhou
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Junduo Hu
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA Institute for Frontier Medical Technology Shanghai University of Engineering Science Shanghai 201620 China
| |
Collapse
|
6
|
Peng S, Zhang H, Zhu Y, Zhou T, He J, Chen N, Lang M, Li H, Wang J. Copper‐Catalyzed Chemo‐ and Diastereoselective 1,3‐Dipolar Cycloaddition of Carbonyl Ylide and Aldehyde‐Tethered‐Cyclohexadienone to Access Polycyclic Systems. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiyong Peng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hong Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Yuqi Zhu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Ting Zhou
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jieyin He
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Nuan Chen
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hongguang Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 People's Republic of China
| |
Collapse
|
7
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
8
|
Xu C, Qiao J, Dong S, Zhou Y, Liu X, Feng X. Asymmetric synthesis of dihydro-1,3-dioxepines by Rh(ii)/Sm(iii) relay catalytic three-component tandem [4 + 3]-cycloaddition. Chem Sci 2021; 12:5458-5463. [PMID: 34168787 PMCID: PMC8179659 DOI: 10.1039/d1sc01019k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N'-dioxide-Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.
Collapse
Affiliation(s)
- Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
9
|
Wang Q, May JA. Formation of β-Oxo- N-vinylimidates via Intermolecular Ester Incorporation in Huisgen Cyclization/Carbene Cascade Reactions. Org Lett 2020; 22:9579-9584. [PMID: 33300803 DOI: 10.1021/acs.orglett.0c03619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unusual intermolecular trapping of esters by carbenes generated via a Huisgen cyclization/retroelectrocyclization/dediazotization cascade reaction is presented. β-Oxo-N-vinylimidates could be obtained in one step from propargyl carbonazidates. Mechanistic control experiments suggested reversible dipole formation by ester addition to the carbene, and nitrogen attack to the ester carbonyl was irreversibly followed by stereoselective decarboxylative elimination to give the Z-vinyl imidate. The cross-conjugated enone, imidate, and enamine functional groups in the β-oxo-N-vinylimidates offer novel syntheses of functionalized oxazoles.
Collapse
Affiliation(s)
- Qinxuan Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Fleming Building Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
10
|
Yang X, Zhu Y, Xie Z, Li Y, Zhang Y. Visible-Light-Induced Charge Transfer Enables Csp3–H Functionalization of Glycine Derivatives: Access to 1,3-Oxazolidines. Org Lett 2020; 22:1638-1643. [DOI: 10.1021/acs.orglett.0c00234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Suga H, Toda Y. Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions Based on Ylide Formation Reactions. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University
| | | |
Collapse
|
13
|
Zhang J, Deng G, Wang J. Diastereoselective Synthesis of 2-(1,3-Dioxolanes-4-yl)-4H
-pyran-4-ones from 2-Diazo-3,5-dioxo-6-ynoates (sulfones) and Aldehydes Based on Tandem Cyclization-Cycloaddition Strategy. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jianfang Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
- Beijing National Laboratory for Molecular Sciences (BNLMS); Peking University; 100871 Beijing PR China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Peking University; 100871 Beijing PR China
| |
Collapse
|
14
|
Yu J, Chen L, Sun J. Copper-Catalyzed Oxy-aminomethylation of Diazo Compounds with N,O-Acetals. Org Lett 2019; 21:1664-1667. [DOI: 10.1021/acs.orglett.9b00203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianliang Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Long Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| |
Collapse
|
15
|
Satheesh V, Vivek Kumar S, Punniyamurthy T. Expedient stereospecific Co-catalyzed tandem C–N and C–O bond formation of N-methylanilines with styrene oxides. Chem Commun (Camb) 2018; 54:11813-11816. [DOI: 10.1039/c8cc06223d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co(ii)-catalyzed stereospecific sequential C–N and C–O bond formation of styrene oxides with N-methylanilines has been developed. Optically active epoxides can be coupled with high enantiomeric purity.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | | | |
Collapse
|