1
|
Wu MJ, Xu B, Guo YW. Unusual Secondary Metabolites from the Mangrove Ecosystems: Structures, Bioactivities, Chemical, and Bio-Syntheses. Mar Drugs 2022; 20:md20080535. [PMID: 36005537 PMCID: PMC9410182 DOI: 10.3390/md20080535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/17/2022] Open
Abstract
Mangrove ecosystems are widely distributed in the intertidal zone of tropical and subtropical estuaries or coasts, containing abundant biological communities, for example, mangrove plants and diverse groups of microorganisms, featuring various bioactive secondary metabolites. We surveyed the literature from 2010 to 2022, resulting in a collection of 134 secondary metabolites, and classified them into two major families in terms of the biological sources and 15 subfamilies according to the chemical structures. To highlight the structural diversity and bioactivities of the mangrove ecosystem-associated secondary metabolites, we presented the chemical structures, bioactivities, biosynthesis, and chemical syntheses.
Collapse
Affiliation(s)
- Meng-Jun Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baofu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Correspondence: (B.X.); (Y.-W.G.)
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Correspondence: (B.X.); (Y.-W.G.)
| |
Collapse
|
2
|
Thiyagarajan R, Begum Z, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Tokiwa S, Takeshita M, Nakano H. New small γ-turn type N-primary amino terminal tripeptide organocatalyst for solvent-free asymmetric aldol reaction of various ketones with aldehydes. RSC Adv 2021; 11:38925-38932. [PMID: 35493209 PMCID: PMC9044195 DOI: 10.1039/d1ra08635a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
New small γ-turn type N-primary amino terminal tripeptides were synthesized and their functionality as an organocatalyst was examined in the asymmetric aldol reaction of various ketones with different aromatic aldehydes under solvent-free neat conditions to afford the desired chiral anti-aldol products in good to excellent chemical yields, diastereoselectivities and enantioselectivities (up to 99%, up to syn : anti/13 : 87 dr, up to 99% ee).
Collapse
Affiliation(s)
- Rajkumar Thiyagarajan
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Zubeda Begum
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Chigusa Seki
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Yuko Okuyama
- Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima Aoba-Ku Sendai 981-8558 Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Sciences,Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima Aoba-Ku Sendai 981-8558 Japan
| | - Koji Uwai
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Michio Tokiwa
- Tokiwakai Group 62 Numajiri Tsuduri-Chou Uchigo Iwaki 973-8053 Japan
| | - Suguru Tokiwa
- Tokiwakai Group 62 Numajiri Tsuduri-Chou Uchigo Iwaki 973-8053 Japan
| | | | - Hiroto Nakano
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| |
Collapse
|
3
|
Cheng M, Li P, Jiang Y, Tang X, Zhang W, Wang Q, Li G. Penitol A and Penicitols E-I: Citrinin Derivatives from Penicillium citrinum and the Structure Revision of Previously Proposed Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:1345-1352. [PMID: 33847126 DOI: 10.1021/acs.jnatprod.1c00082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Penitol A (1), a new citrinin derivative with a rare tricyclic spiro skeleton, was isolated from a coral-derived strain of the fungus Penicillium citrinum. In addition, penicitols E-I (2-6), five new citrinin analogues, were coisolated. Their structures were determined by an analysis of 1D/2D NMR and HRESIMS data, statistical DP4+ analyses based on DFT-GIAO NMR calculations, quantum chemistry ECD calculations, and a single-crystal X-ray diffraction study. The structures of penicitol A (7) and two related synthetic intermediates were revised. Biological evaluation results revealed that penitol A (1) exhibited cytotoxic activity against K562 tumor cells, with an IC50 value of 8.8 μM. A proposed route of formation of compounds 1-7 was reported.
Collapse
Affiliation(s)
- Meimei Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Yun Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Wenjie Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| |
Collapse
|
4
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
5
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
6
|
Gao J, Rao P, Xu K, Wang S, Wu Y, He C, Ding H. Total Synthesis of (−)-Rhodomollanol A. J Am Chem Soc 2020; 142:4592-4597. [DOI: 10.1021/jacs.0c00308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jianhong Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Peirong Rao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Kaixiang Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shuaifeng Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yufei Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chi He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Cordes M, Kalesse M. Very Recent Advances in Vinylogous Mukaiyama Aldol Reactions and Their Applications to Synthesis. Molecules 2019; 24:molecules24173040. [PMID: 31443344 PMCID: PMC6749529 DOI: 10.3390/molecules24173040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
It is a challenging objective in synthetic organic chemistry to create efficient access to biologically active compounds. In particular, one structural element which is frequently incorporated into the framework of complex natural products is a β-hydroxy ketone. In this context, the aldol reaction is the most important transformation to generate this structural element as it not only creates new C-C bonds but also establishes stereogenic centers. In recent years, a large variety of highly selective methodologies of aldol and aldol-type reactions have been put forward. In this regard, the vinylogous Mukaiyama aldol reaction (VMAR) became a pivotal transformation as it allows the synthesis of larger fragments while incorporating 1,5-relationships and generating two new stereocenters and one double bond simultaneously. This review summarizes and updates methodology-oriented and target-oriented research focused on the various aspects of the vinylogous Mukaiyama aldol (VMA) reaction. This manuscript comprehensively condenses the last four years of research, covering the period 2016-2019.
Collapse
Affiliation(s)
- Martin Cordes
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 1b, 30167 Hannover, Germany.
| |
Collapse
|
8
|
Murakoshi S, Hosokawa S. Synthesis of C3-C21 Segment of Aflastatin A Using Remote Asymmetric Induction Reactions. Org Lett 2019; 21:758-761. [PMID: 30632762 DOI: 10.1021/acs.orglett.8b04008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C3-C21 segment of aflastatin A has been synthesized by converging three segments including the C3-C8 segment, the C9-C15 segment, and the C16-C21 segment. Each segment has been synthesized from a vinylketene silyl N,O-acetal possessing a chiral auxiliary by a wide-range stereocontrol strategy. The C3-C8 segment was constructed in seven steps including the stereoselective vinylogous Mukaiyama alkylation, while the C9-C15 segment and the C16-C21 segment were synthesized using the vinylogous Mukaiyama aldol reaction in seven and eight steps, respectively.
Collapse
Affiliation(s)
- Sawato Murakoshi
- Department of Applied Chemistry, Faculty of Science and Engineering , Waseda University , 3-4-1 Ohkubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Science and Engineering , Waseda University , 3-4-1 Ohkubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| |
Collapse
|
9
|
Zhang Z, Tu YQ, Zhang XM, Zhang FM, Wang SH. Copper-catalyzed highly diastereoselective cross-dehydrogenative coupling between 8-hydroxyisochromanes and 1,3-dicarbonyl compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00353c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel copper-catalyzed highly diastereoselective cross-dehydrogenative coupling reaction for the access of tricyclic chromanes from 8-hydroxyisochromanes and 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shao-Hua Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
10
|
Zhang HJ, Yin L. Asymmetric Synthesis of α,β-Unsaturated δ-Lactones through Copper(I)-Catalyzed Direct Vinylogous Aldol Reaction. J Am Chem Soc 2018; 140:12270-12279. [DOI: 10.1021/jacs.8b07929] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|