1
|
Chen L, Liu L, Li Y, Guan S, Fan L, Qin X, Di Y, Tang L, Luo R, Yan Y. Macrocyclic Diterpenoids from Euphorbia peplus Possessing Activity Towards Autophagic Flux. Int J Mol Sci 2024; 26:299. [PMID: 39796156 PMCID: PMC11719499 DOI: 10.3390/ijms26010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Euphjatrophanes H-L (1-5), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from Euphorbia peplus, along with eight known diterpenoids (6-13). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3. Compounds 1-3, 5-10, and 12 significantly increase autophagic flux, and compounds 1 and 12 displayed relatively high BBB permeability, with logPe values of -4.853 and -5.017, respectively. These findings indicated that jatrophane diterpenoids could serve as a valuable source for innovative autophagy inducers.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Lulan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Yingyao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Shipeng Guan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Lingling Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Xujie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Rongcan Luo
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, and Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
2
|
Liu M, Wu C, Xie X, Li H, She X. Total Synthesis of the Euphorbia Diterpenoid Pepluacetal. Angew Chem Int Ed Engl 2024; 63:e202400943. [PMID: 38509839 DOI: 10.1002/anie.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The first total synthesis of the Euphorbia diterpenoid pepluacetal is disclosed in both racemic and chiral fashions. The synthesis strategically relies on a photo-induced Wolff rearrangement/lactonization cascade (WRLC) reaction to access the cyclobutane moiety, a ring-closing metathesis/cyclopropanation sequence to rapidly forge the 7-3 bicyclic system, and a late-stage Rh-catalyzed transannular carbenoid insertion to C(sp3)-H bond followed by a Baeyer-Villiger oxidation and ring-opening manipulations to install the side chain. The synthetic route demonstrates excellent stereochemical control on the non-classical concave-face bond formation, remote traceless stereochemical relay and high scalability to provide 20 mg of (+)-pepluacetal.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Chuanhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Li Y, Yu ZP, Li YP, Yu JH, Yue JM. Diterpenoids from Euphorbia peplus possessing cytotoxic and anti-inflammatory activities. Bioorg Chem 2024; 145:107194. [PMID: 38367429 DOI: 10.1016/j.bioorg.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Phytochemical investigation into the medium polar fraction of the ethanol extract of Euphorbia peplus led to the identification of 32 diterpenoids with five structural types. Compounds 1-5 and 7-11 are reported for the first time, while the configuration of 6,7-epoxy group of 6 was revised to be β-oriented. Compounds 1-5 feature a rare structural variation of the double bond at Δ1 migrating to Δ1(10) in the tigliane-type diterpenoid family. Biologically, compound 21 was found to be the only one to show moderate cytotoxic activity, associated with the presence of a benzoyloxy residue at C-16. Besides, compounds 4, 8, 12, 13, 16, and 19 show significant inhibitory activities against NO production induced by LPS in RAW264.7 macrophage cells, with IC50 values within 2-5 μM. Structure-activity relationship (SAR) analysis revealed that the ingenane-type diterpenoids have the best anti-inflammatory activity, and the esterification at 3-OH or 5-OH is crucial. Further biological researches demonstrated that 13, the predominant metabolite in this plant, exerts anti-inflammatory effects by blocking the activation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Zhi-Pu Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China. Qingdao 266003, People's Republic of China
| | - Yu-Peng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Jin-Hai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China.
| | - Jian-Min Yue
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
4
|
Wu SQ, Zhu X, Yuan T, Yuan FY, Zhou S, Huang D, Wang Y, Tang GH, Huang ZS, Chen X, Yin S. Discovery of Ingenane Diterpenoids from Euphorbia hylonoma as Antiadipogenic Agents. JOURNAL OF NATURAL PRODUCTS 2023; 86:2691-2702. [PMID: 37974450 DOI: 10.1021/acs.jnatprod.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Thirteen new Euphorbia diterpenoids, euphylonanes A-M (1-13), and eight known ones were isolated from the whole plants of Euphorbia hylonoma. Compounds 1 and 2 are two rearranged ingenanes bearing a rare 6/6/7/3-fused ring system. Compound 3 represents the first example of a 9,10-epoxy tigliane, while 4-21 are typical ingenanes varying with substituents. Structures were elucidated using a combination of spectroscopic, computational, and chemical methods. Most ingenanes exerted a significant antiadipogenic effect in 3T3-L1 adipocytes, among which 4 was the most active with an EC50 value of 0.60 ± 0.27 μM. Mechanistic study revealed that 4 inhibited the adipogenesis and lipogenesis in adipocytes via activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shu-Qi Wu
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Yuan
- School of Health, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shiyou Zhou
- Guangdong Vision and Eye Institute, Guangzhou 510060, People's Republic of China
| | - Dong Huang
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ying Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xin Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Wu C, Zhang J, Liu M, Xie X, Li H, She X. Rearrangement of the Tetra- and Tricyclic Skeletons of Pepluanol B to Access the Core Structures of Tigliane- and Myrsinane-Type Euphorbia Diterpenes. Org Lett 2023; 25:7995-7999. [PMID: 37906267 DOI: 10.1021/acs.orglett.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pepluanol B is a new Euphorbia diterpene with an unprecedented tetracyclic backbone. However, its biogenetic relationship with known Euphorbia diterpenes is unclear. We report herein that its β-hydroxyl ketone motif could undergo a base-promoted retro-aldol/aldol process in two pathways and afford the skeletons of tigliane- and myrsinane-type Euphorbia diterpenes through the formation of the C8-C14 and C7-C13 bonds, respectively. The retro-aldol/aldol cascade indicates that pepluanol B is possibly a biosynthetic precursor of lathyranes and other relevant dipterpenes.
Collapse
Affiliation(s)
- Chuanhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Jing Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Meng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
6
|
Cai Q, Zha HJ, Yuan SY, Sun X, Lin X, Zheng XY, Qian YX, Xia RF, Luo YS, Shi Z, Su JC, Wan LS. Diterpenoids from Euphorbia fischeriana with Kv1.3 Inhibitory Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2379-2390. [PMID: 37796721 DOI: 10.1021/acs.jnatprod.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Euphorbia diterpenoids possess inhibitory effects of Kv1.3 ion channel, but most of this research has focused on diterpenoids with jatrophane-related or ingenane-related skeletons. In the present study, nine undescribed (1-9) and 16 known (10-25) diterpenoids, based on jatrophane, lathyrane, ingenane, abietane, and atisane skeletons, were identified from the methanol extract of the aerial parts of Euphorbia fischeriana. The structures were established by analysis of the spectroscopic data as well as by single-crystal X-ray diffraction analysis. Among the isolated diterpenoids, macrocyclic jatrophanes and lathyranes exerted Kv1.3 blocking activity. Compound 8 exhibited good selectivity on the inhibition of the Kv 1.3 channel rather than hERG channel, with a selectivity index over 7.0. The selective activity of lathyrane diterpenoids indicates that macrocyclic diterpenoids have the potential to be further investigated as therapeutic agents for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Qin Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong-Jing Zha
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shi-Ying Yuan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China
| | - Xin Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xin-Yu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying-Xian Qian
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yue-Shan Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhimian Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
7
|
Chacón-Morales PA. Unprecedented diterpene skeletons isolated from vascular plants in the last twenty years (2001-2021). PHYTOCHEMISTRY 2022; 204:113425. [PMID: 36096268 DOI: 10.1016/j.phytochem.2022.113425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Every year there are hundreds of reports about the isolation of undescribed terpenoids based on novel functionalizations of known carbocyclic skeletons series. However, on some occasions the compounds obtained have a carbocyclic skeleton that does not correspond with the series established, in these peculiar opportunities, in addition to finding an undescribed natural product, is obtained an unprecedented carbocyclic skeleton, whose biogenesis must necessarily involve other additional steps that explain its formation. This review accounts for the reports of seventy-nine unprecedented diterpene skeletons (corresponding to one-hundred-three undescribed diterpenoids) isolated from vascular plants in the last two decades. According to the genus, Euphorbia and Salvia are the most prolific in reports of unprecedented diterpene skeletons with a total of twenty, and nine skeletons, respectively. If the findings are expressed in terms of the family, Euphorbiaceae and Lamiaceae have the highest number of reports of undescribed diterpene skeletons, with twenty-seven and twenty-two, respectively. Finally, fifty-three skeletons are derived from higher diterpenoids (2-12, 68, 69, 86, 104-109, 158-161, 186, 189, 222, 250-255, 285-298, 403-404, 415, 416, and 436), twenty are derived from lower diterpenoids (135, 136, 192-194, 225-229, 363-370, 397, and 425), and six (96, 97, 147, 148, 205, and 206) are derived from skeletons whose biogenesis has not yet been established, or at least, cannot be formally included within the groups mentioned above. This article comprehensively highlights the hypothetical biosynthetic pathway for each of the one-hundred-three undescribed compounds with unprecedented diterpene skeletons and summarizes their most significant biological activities.
Collapse
Affiliation(s)
- Pablo A Chacón-Morales
- Natural Products Laboratory, Department of Chemistry, Faculty of Science, University of Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
8
|
Zhao H, Sun L, Kong C, Mei W, Dai H, Xu F, Huang S. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012-2021). JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115574. [PMID: 35944737 DOI: 10.1016/j.jep.2022.115574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia is one of the major genera in angiosperms, which is widely distributed all over the world, including Asia, Africa and Central and South America. The roots or tubers of Euphorbia are famous for medicinal purposes, especially in China. Many of them, such as Euphorbia pekinensis Rupr, Euphorbia fischeriana Steud and Euphorbia Kansui S.L.Liou ex S.B.Ho. . are used as Chinese herbal medicines. AIM OF THE STUDY This paper reviews the diterpenoids isolated from the genus Euphorbia species and the pharmacological activities of these compounds to evaluate its traditional use and potential future development. MATERIALS AND METHODS Information on the studies of the genus Euphorbia Linn was collected from scientific journals, books and reports via library and electronic data search (Scifinder, Web of Science, PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, CNKI and Kew Plants of the Word Online). Meanwhile, it was also obtained from published works of material medica, folk records, ethnophmacological literatures, Ph.D. and Masters dissertations. RESULTS Known as the main constituents of the genus Euphorbia Linn, Diterpenoids possess many pharmacological properties such as anti-inflammation, antiviral activities and cytotoxicity. To date, various types of diterpenoids were identified from this genus, including isopimarane, rosane, abietane, ent-kaurane, ent-atisane. cembrane, casbane, lathyrane, myrsinane, jatropholane, tigliane, ingenane, jatrophane, paraliane, pepluane, and euphoractin. CONCLUSIONS This review describes 14 types of diterpenoid isolated from 45 Euphorbia species from 2012 to 2021, a total of 615 compounds. Among them, mainly include jatrophane (171), lathyrane (92), myrsinane (62), abietane (70), ent-atisane (36), ent-kaurane (7), tigliane (26) and ingenane (19). The possible biological pathways of these compounds were presumed. At the same time, more than 10 biological activities of these compounds were summarized, such as anti-inflammation, antiviral activities and cytotoxicity.
Collapse
Affiliation(s)
- Huan Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - ChuiHao Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - WenLi Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - HaoFu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - FengQing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, PR China.
| | - ShengZhuo Huang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China.
| |
Collapse
|
9
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
10
|
Gao Y, Zhou JS, Liu HC, Zhang Y, Yin WH, Liu QF, Wang GW, Zhao JX, Yue JM. Phonerilins A–K, cytotoxic ingenane and ingol diterpenoids from Euphorbia neriifolia. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Abstract
Herein, we report an enantioselective and convergent total synthesis of (+)-pepluanol A, a structurally intriguing Euphorbia diterpenoid natural product featuring a 5/6/7/3-fused tetracyclic skeleton, from known building blocks in 11 steps. The successful strategy relies on a phenyl selenide-mediated Morita-Baylis-Hillman type reaction as a connective step, forging the precursor for the key intramolecular Diels-Alder reaction to construct the congested 5/6/7-tricyclic framework. A diastereoconvergent cascade starting with an acid-induced removal of the C1-MOM protecting group followed by a retro-aldol/aldol reaction resulted in the formation of a single diastereomer. This stereoconvergency allowed for the successful substrate-controlled diastereoselective cyclopropanation of an advanced intermediate to establish the full carboskeleton of (+)-pepluanol A (1).
Collapse
Affiliation(s)
- Po Yuan
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Tanja Gaich
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| |
Collapse
|
12
|
Xiang ZN, Tong QL, Su JC, Hu ZF, Zhao N, Xia RF, Wu JL, Chen C, Chen JC, Wan LS. Diterpenoids with Rearranged 9(10→11)- abeo-10,12-Cyclojatrophane Skeleton and the First (15 S)-Jatrophane from Euphorbia helioscopia: Structural Elucidation, Biomimetic Conversion, and Their Immunosuppressive Effects. Org Lett 2022; 24:697-701. [PMID: 34965138 DOI: 10.1021/acs.orglett.1c04145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel diterpenoids, one with a rearranged trans,trans-fused tricyclo[10.3.0.04,6]pentadecane framework (1) and the other with an unprecedented 15S configuration (2), were isolated from Euphorbia helioscopia. Their structures were elucidated by extensive analysis of HR-ESI-MS, NMR, quantum-chemical calculation, and X-ray crystallographic data. Biosynthetically, 1 has a unique "cyclopropane-shift-like" biogenesis involving an oxa-di-π-methane (ODPM) rearrangement, which inspired us to accomplish the biomimetic conversion of 3 to 1. Moreover, compound 1 displayed a potent immunosuppressive effect by inhibiting Kv1.3 voltage-gated channels.
Collapse
Affiliation(s)
- Zhi-Nan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qi-Lin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Zhuo-Fan Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ning Zhao
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Le Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Chun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
13
|
Yuan FY, Pan YH, Yin AP, Li W, Huang D, Yan XL, Wu SQ, Tang GH, Pu R, Yin S. Euphorstranoids A and B, two highly rearranged ingenane diterpenoids from Euphorbia stracheyi: structural elucidation, chemical transformation, and lipid-lowering activity. Org Chem Front 2022. [DOI: 10.1039/d1qo01705e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Euphorstranoids A (1) and B (2), two highly rearranged ingenane diterpenoids with an unusual 5/6/7/3 carbon ring system, were isolated from Euphorbia stracheyi.
Collapse
Affiliation(s)
- Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yue-Hua Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ai-Ping Yin
- Department of Clinical Laboratory, the Third People's Hospital of Dongguan, Dongguan 523326, People's Republic of China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shu-Qi Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Rong Pu
- Department of Clinical Laboratory, the Third People's Hospital of Dongguan, Dongguan 523326, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
14
|
|
15
|
Xu Y, Tang P, Zhu M, Wang Y, Sun D, Li H, Chen L. Diterpenoids from the genus Euphorbia: Structure and biological activity (2013-2019). PHYTOCHEMISTRY 2021; 190:112846. [PMID: 34229224 DOI: 10.1016/j.phytochem.2021.112846] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Euphorbiaceae is one of the largest families of higher plants, including 7500 species, and many of them are used as medicines in China. From 2013 to 2019, a total of 455 previously undescribed diterpenoids were isolated from 53 species of Euphorbia, and some skeleton types were first discovered from the genus Euphorbia. Most of the diterpenoids isolated from Euphorbia spp. have been tested for their biological activity, and some of them were first reported for Euphorbia diterpenoids in recent years, such as neuroprotection, antimalarial activity and inhibition of osteoclast formation. In this review, we summarize all the isolated diterpenoids from the genus Euphorbia according to their skeleton types, classify all these diterpenoids into 26 normal classes and 37 novel skeleton types, and summarize their biological activity.
Collapse
Affiliation(s)
- Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Man Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yali Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
16
|
Yuan P, Gerlinger CKG, Herberger J, Gaich T. Ten-Step Asymmetric Total Synthesis of (+)-Pepluanol A. J Am Chem Soc 2021; 143:11934-11938. [PMID: 34324326 DOI: 10.1021/jacs.1c05257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first asymmetric synthesis of pepluanol A (1) is presented. The synthesis route is very concise (10 steps) and features a Curtin-Hammett-driven stereoconvergent intramolecular Diels-Alder reaction. A Nozaki-Hiyama-Kishi reaction comprises the connective step, bringing together the seven-membered enone system bearing the dienophile and the diene in the side chain. Subsequent stereoconvergent IMDA reaction furnishes the carboskeleton of the natural product in only 7 steps. The reactions were carried out on a gram scale up to an advanced intermediate and including the stereoconvergent intramolecular Diels-Alder reaction.
Collapse
Affiliation(s)
- Po Yuan
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Christa K G Gerlinger
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Jan Herberger
- Institute of Inorganic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Tanja Gaich
- Institute of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| |
Collapse
|
17
|
Flores-Giubi ME, Botubol-Ares JM, Durán-Peña MJ, Escobar-Montaño F, Zorrilla D, Sánchez-Márquez J, Muñoz E, Macías-Sánchez AJ, Hernández-Galán R. Bond reactivity indices approach analysis of the [2+2] cycloaddition of jatrophane skeleton diterpenoids from Euphorbia gaditana Coss to tetracyclic gaditanone. PHYTOCHEMISTRY 2020; 180:112519. [PMID: 33038551 DOI: 10.1016/j.phytochem.2020.112519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The reaction mechanism of the intramolecular [2 + 2] cycloaddition from a jatrophane precursor to the gaditanane skeleton, an unprecedented 5/6/4/6-fused tetracyclic ring framework recently isolated from Euphorbia spp., was studied using the bond reactivity indices approach. Furthermore, six diterpenoids, including three undescribed jatrophanes isolated from E. gaditana Coss, were described. The structures of these compounds were deduced by a combination of 2D NMR spectroscopy and ECD data analysis.
Collapse
Affiliation(s)
- M Eugenia Flores-Giubi
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Departamento Central, Paraguay
| | - Jose Manuel Botubol-Ares
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - María J Durán-Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Felipe Escobar-Montaño
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - David Zorrilla
- Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real s/n, 11510, Puerto Real, Cádiz, Spain
| | - Jesús Sánchez-Márquez
- Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real s/n, 11510, Puerto Real, Cádiz, Spain
| | - Eduardo Muñoz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédicas de Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, C/ Maria Virgen y Madre s/n, 14004, Córdoba, Spain
| | - Antonio J Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
18
|
Chen YN, Ding X, Lu QY, Li DM, Li BT, Liu S, Yang L, Zhang Y, Di YT, Fang X, Hao XJ. Macrocyclic diterpenoids from the seeds of Euphorbia peplus with potential activity in inducing lysosomal biogenesis. Bioorg Chem 2020; 105:104464. [PMID: 33212310 DOI: 10.1016/j.bioorg.2020.104464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
The first phytochemical investigation of the seeds of Euphorbia peplus led to the isolation and characterization of five new (1-5), named euphopepluanones A-E, and five known diterpenoids (6-10). Their structures were established by extensive spectroscopic analysis and X-ray crystallographic experiments. Euphopepluanones A-E (1-3) feature a very rare 5/11/5-tricyclic skeleton, and euphopepluanones D-E (4-5) represent the first report of lathyrane type diterpenoids found in E. peplus. The new compounds 1-5 were assessed for their activities to induce lysosomal biogenesis through LysoTracker Red staining, in which compounds 1 and 3 could significantly induce lysosomal biogenesis. In addition, compounds 1 and 3 could promote the nuclear translocation of TFEB, a master transcriptional factor of lysosomal genes, indicating that compounds 1 and 3 induced lysosomal biogenesis through activation of TFEB.
Collapse
Affiliation(s)
- Yan-Ni Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Qing-Yun Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Dong-Mei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China; Yunnan University, Kunming, PR China
| | - Bo-Ting Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Shuai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, PR China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.
| |
Collapse
|
19
|
Wang JX, Li XH, Gao F, Zhou XL. An unexpected Lewis acid-mediated structural conversion of a Euphorbia Diterpene: From a Lathyrane skeleton to diterpene pseudo-alkaloids. Fitoterapia 2020; 146:104710. [DOI: 10.1016/j.fitote.2020.104710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
|
20
|
Shi QQ, Zhang XJ, Wang TT, Wang Q, Sun TT, Amin M, Zhang RH, Li XL, Xiao WL. Euphopias A–C: Three Rearranged Jatrophane Diterpenoids with Tricyclo[8.3.0.02,7]tridecane and Tetracyclo[11.3.0.02,10.03,7]hexadecane Cores from Euphorbia helioscopia. Org Lett 2020; 22:7820-7824. [DOI: 10.1021/acs.orglett.0c02676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang-Qiang Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ting-Ting Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qi Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Tian-Tian Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Muhammad Amin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
21
|
Du M, An L, Xu J, Guo Y. Euphnerins A and B, Diterpenoids with a 5/6/6 Rearranged Spirocyclic Carbon Skeleton from the Stems of Euphorbia neriifolia. JOURNAL OF NATURAL PRODUCTS 2020; 83:2592-2596. [PMID: 32822173 DOI: 10.1021/acs.jnatprod.0c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Euphnerins A (1) and B (2), two extremely modified diterpenoids possessing an unprecedented 5/6/6 rearranged spirocyclic carbon skeleton, and a biosynthetically related known diterpenoid (3) were purified from the stems of Euphorbia neriifolia. Their structures were identified by NMR experiments and X-ray diffraction analysis, as well as experimental and calculated electronic circular dichroism data comparison. A putative biosynthetic relationship of 1 and 2 with their presumed precursor 3 is proposed. Compound 1 showed NO inhibitory effects in lipopolysaccharide-stimulated BV-2 cells with an IC50 value of 22.4 μM.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
22
|
Zhang J, Liu M, Wu C, Zhao G, Chen P, Zhou L, Xie X, Fang R, Li H, She X. Total Synthesis of (−)‐Pepluanol B: Conformational Control of the Eight‐Membered‐Ring System. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Meng Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Chuanhua Wu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Gaoyuan Zhao
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Peiqi Chen
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Lin Zhou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| |
Collapse
|
23
|
Zhang J, Liu M, Wu C, Zhao G, Chen P, Zhou L, Xie X, Fang R, Li H, She X. Total Synthesis of (−)‐Pepluanol B: Conformational Control of the Eight‐Membered‐Ring System. Angew Chem Int Ed Engl 2020; 59:3966-3970. [DOI: 10.1002/anie.201915876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Meng Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Chuanhua Wu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Gaoyuan Zhao
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Peiqi Chen
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Lin Zhou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 Gansu P. R. China
| |
Collapse
|
24
|
Yu CX, Wang RY, Qi FM, Su PJ, Yu YF, Li B, Zhao Y, Zhi DJ, Zhang ZX, Fei DQ. Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer's disease bioactivity. Org Biomol Chem 2020; 18:76-80. [DOI: 10.1039/c9ob02334h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eupulcherol A (1), a novel triterpenoid with an unprecedented carbon skeleton, was isolated from Euphorbia pulcherrima.
Collapse
Affiliation(s)
- Chun-Xue Yu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Ru-Yue Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Feng-Ming Qi
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Pan-Jie Su
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Yi-Fan Yu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Bing Li
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Ye Zhao
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - De-Juan Zhi
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | | | - Dong-Qing Fei
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
25
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
26
|
Su JC, Cheng W, Song JG, Zhong YL, Huang XJ, Jiang RW, Li YL, Li MM, Ye WC, Wang Y. Macrocyclic Diterpenoids from Euphorbia helioscopia and Their Potential Anti-inflammatory Activity. JOURNAL OF NATURAL PRODUCTS 2019; 82:2818-2827. [PMID: 31550154 DOI: 10.1021/acs.jnatprod.9b00519] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Guided by 1H NMR spectroscopic experiments using the aromatic protons as probes, 11 macrocyclic diterpenes (1-11) were isolated from the aerial parts of Euphorbia helioscopia. Their full three-dimensional structures, including absolute configurations, were established unambiguously by spectroscopic analysis and single-crystal X-ray crystallographic experiments. Among the isolated compounds, compound 1 is the third member thus far of a rare class of Euphorbia diterpenes featuring an unusual 5/10 fused ring system, and 2-4 are new jatrophane diterpenes. Based on the NMR data of the jatrophane diterpenes obtained in this study as well as those with crystallographic structures reported in the literature, the correlations of the chemical shifts of the relevant carbons and the configurations of C-2, C-13, and C-14 of their flexible macrocyclic ring were considered. Moreover, the anti-inflammatory activities of 1-11 were investigated by monitoring their inhibitory effects on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. Compound 1 showed an IC50 of 7.4 ± 0.6 μM, which might be related to the regulation of the NF-κB signaling pathway by suppressing the translocation of the p65 subunit and the consequent reduction of IL-6 and TNF-α secretions.
Collapse
|
27
|
NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorg Chem 2019; 92:103237. [PMID: 31536954 DOI: 10.1016/j.bioorg.2019.103237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
Abstract
Two new ent-atisane-type diterpenoids (1 and 2), three new lathyrane-type diterpenoids (3-5), and seven known analogues (6-12) were isolated from Euphorbia antiquorum. The structures of these diterpenoids were established by analysis of their NMR, MS, and electronic circular dichroism data. The anti-inflammatory activities were evaluated biologically and compounds 1, 4, 7, 8, and 10 displayed strong NO inhibitory effects with IC50 values less than 40 μM. The potential anti-inflammatory mechanism was also investigated using molecular docking and Western blotting.
Collapse
|
28
|
New e:b-Friedo-Hopane Type Triterpenoids from Euphorbia peplus with Simiarendiol Possessing Significant Cytostatic Activity against HeLa Cells by Induction of Apoptosis and S/G2 Cell Cycle Arrest. Molecules 2019; 24:molecules24173106. [PMID: 31461873 PMCID: PMC6749284 DOI: 10.3390/molecules24173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 11/17/2022] Open
Abstract
Seven rare e:b-friedo-hopane-type triterpenoids including four new (1–4) and three known (5–7) ones with 5 being first reported as a natural product, together with five other known triterpenoids (8–12), were isolated from the nonpolar fractions of the ethanolic extract of Euphorbia peplus. Structural assignments for these compounds were based on spectroscopic analyses and quantum chemical computation method. The structural variations for the C-21 isopropyl group, including dehydrogenation (1 and 3) and hydroxylation at C-22 (simiarendiol, 2), were the first cases among e:b-friedo-hopane-type triterpenoids. Simiarendiol (2) bearing a 22-OH showed significant cytostatic activity against HeLa and A549 human tumor cell lines with IC50 values of 3.93 ± 0.10 and 7.90 ± 0.31 μM, respectively. The DAPI staining and flow cytometric analysis revealed that simiarendiol (2) effectively induced cell apoptosis and arrested cell cycle at the S/G2 phases in a dose-dependent manner in HeLa cells.
Collapse
|
29
|
Wang P, Xie C, An L, Yang X, Xi Y, Yuan S, Zhang C, Tuerhong M, Jin DQ, Lee D, Zhang J, Ohizumi Y, Xu J, Guo Y. Bioactive Diterpenoids from the Stems of Euphorbia royleana. JOURNAL OF NATURAL PRODUCTS 2019; 82:183-193. [PMID: 30730729 DOI: 10.1021/acs.jnatprod.8b00493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two ingenane- (1 and 2), two ent-atisane- (3 and 4), two ent-kaurane- (5 and 6), two ent-abietane- (7 and 8), and one ent-isopimarane-type (9) diterpenoid and 12 known analogues have been isolated from the methanolic extract of the stems of Euphorbia royleana. Their structures, including absolute configurations, were determined by extensive spectroscopic methods and ECD data analysis. The nitric oxide inhibitory activities of those diterpenoids were examined biologically in lipopolysaccharide-stimulated BV-2 cells, with compounds 1, 2, 5-7, 10, and 12 having IC50 values lower than 40 μM. Molecular docking was used to investigated the possible mechanism of compounds 1, 2, 5-7, 10, and 12.
Collapse
Affiliation(s)
- Peixia Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yaru Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Shuo Yuan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Chenyue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Da-Qing Jin
- School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering , Shihezi University , Shihezi 832003 , People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute , Tohoku Fukushi University , Sendai 989-3201 , Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
30
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2018; 35:702-706. [PMID: 30058659 DOI: 10.1039/c8np90024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pepluanol C from Euphorbia peplus.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UKG12 8QQ.
| | | |
Collapse
|