1
|
Sing L, Dutta J, Ghosh S, De Sarkar S. Electrosynthesis of Cyclic Isoureas and Ureas Through Contiguous Heterofunctionalizations. J Org Chem 2024; 89:11323-11333. [PMID: 39067008 DOI: 10.1021/acs.joc.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
An efficient synthetic protocol for the selenylated cyclic isoureas was developed using electrochemical activation of diselenides. This sustainable approach permitted transition metal and chemical oxidant-free difunctionalization of olefins and overall access to distinct 1,2,3 triheterofunctionalized carbon skeletons. Excellent functional group tolerance was noticed, allowing the synthesis of a series of cyclic isourea derivatives. In addition, an acid-triggered skeletal isomerization facilitated the synthesis of cyclic urea derivatives from the corresponding cyclic isoureas. Mechanistic investigations, along with voltammetric studies, enabled the postulation of the reaction mechanism.
Collapse
Affiliation(s)
- Laxmikanta Sing
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Jhilik Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sayan Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Lin B, Ruan Y, Hou Q, Yuan Z, Liang Y, Zhang J. Regioselective 5- exo-dig (halo)cyclization of N-propargyloxycarbonyl guanidine derivatives under mild conditions. Org Biomol Chem 2024; 22:5585-5590. [PMID: 38896418 DOI: 10.1039/d4ob00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A highly regioselective 5-exo-dig cyclization of aromatic N-propargyloxycarbonyl guanidines was developed via an Ag(I)-catalyzed intramolecular hydroamination reaction. This method features a fast reaction rate and mild reaction conditions. Furthermore, it was extended to access halogenated analogues via a one-pot Ag(I)-catalyzed bromocyclization reaction or an I2-mediated iodocyclization reaction with high E/Z selectivity.
Collapse
Affiliation(s)
- Bohong Lin
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yaoping Ruan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Hou
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Zhijun Yuan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yunshi Liang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| |
Collapse
|
3
|
Yang LF, Xiong ZQ, Ouyang XH, Wang QA, Li JH. Cobalt-Promoted Photoredox 1,2-Amidoamination of Alkenes with N-Sulfonamidopyridin-1-ium Salts and Free Amines. Org Lett 2024; 26:1667-1671. [PMID: 38380904 DOI: 10.1021/acs.orglett.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A cobalt-promoted photoredox 1,2-amidoamination of alkenes with N-sulfonamidopyridin-1-ium salts and free amines for the synthesis of unsymmetrical vicinal diamines has been developed. The reaction handles N-(sulfonamido)pyridin-1-ium salts as the sulfonamidyl radical precursors and free amines as the nucleophilic terminating reagents to enable the formation of two new C(sp3)-N bonds in a single reaction step and offers a route to selectively producing unsymmetrical vicinal diamines with an exquisite selectivity and a good compatibility of functional groups.
Collapse
Affiliation(s)
- Liang-Feng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Kumar R. Transition-Metal-Catalyzed 1,2-Diaminations of Olefins: Synthetic Methodologies and Mechanistic Studies. Chem Asian J 2024; 19:e202300705. [PMID: 37743249 DOI: 10.1002/asia.202300705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
1,2-Diamines are synthetically important motifs in organo-catalysis, natural products, and drug research. Continuous utilization of transition-metal based catalyst in direct 1,2-diamination of olefines, in contrast to metal-free transformations, with numerous impressive advances made in recent years (2015-2023). This review summarized contemporary research on the transition-metal catalyzed/mediated [e. g., Cu(II), Pd(II), Fe(II), Rh(III), Ir(III), and Co(II)] 1,2-diamination (asymmetric and non-asymmetric) especially emphasizing the recent synthetic methodologies and mechanistic understandings. Moreover, up-to-date discussion on (i) paramount role of oxidant and catalyst (ii) key achievements (iii) generality and uniqueness, (iv) synthetic limitations or future challenges, and (v) future opportunities are summarized related to this potential area.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, INDIA
| |
Collapse
|
5
|
Dellal F, Santo Domingo Porqueras D, Narayanin-Richenapin S, Thimotee M, Delahaye V, Diouf Y, Piasta K, Gumienna-Kontecka E, Kozlowski H, Beyler M, Tripier R, Moyeux A, Gager O, Besnard V, Salerno M. Multistep synthesis of a novel copper complex with potential for Alzheimer's disease diagnosis. J Biol Inorg Chem 2023; 28:777-790. [PMID: 37978078 DOI: 10.1007/s00775-023-02028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 11/19/2023]
Abstract
Positron emission tomography (PET) imaging of Aβ plaques, is recognized as a tool for the diagnosis of Alzheimer's disease. As a contribution to the development of new strategies for early diagnosis of the disease, using PET medical imaging technique, a new copper complex, the [Cu(TE1PA-ONO)]+ was synthesized in ten steps. The key step of our strategy is the coupling of a monopicolinate-N-alkylated cyclam-based ligand with a moiety capable of recognizing Aβ plaques via a successful and challenging Buchwald-Hartwig coupling reaction. To our knowledge, it is the first time that such a strategy is used to functionalize polyazamacrocyclic derivatives. The thermodynamic stability constants determined in MeOH/H2O solvent indicate that the attachment of this moiety does not weaken the chelating properties of TE1PA-ONO ligand in relation to parent HTE1PA. The novel complex described here is able to recognize amyloid plaques in brain sections from Alzheimer's disease patients and shows low toxicity to human neuronal cells.
Collapse
Affiliation(s)
- Fatma Dellal
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Diego Santo Domingo Porqueras
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Stacy Narayanin-Richenapin
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Marine Thimotee
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Vanessa Delahaye
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Yacine Diouf
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Karolina Piasta
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | | | - Henryk Kozlowski
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060, Opole, Poland
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, Brest, France
| | - Raphael Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, Brest, France
| | - Alban Moyeux
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Olivier Gager
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Valérie Besnard
- Université Sorbonne Paris Nord, UMR1272, Laboratoire Hypoxie et Poumon, Plateforme TisCel 13, 1 rue de Chablis, 93000, Bobigny, France
| | - Milena Salerno
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France.
| |
Collapse
|
6
|
Robins JG, Johnson JS. Development of New Reactions Driven by N-O Bond Cleavage: from O-Acyl Hydroxylamines to Tetrodotoxin. Synlett 2023; 34:1563-1572. [PMID: 37841363 PMCID: PMC10574809 DOI: 10.1055/s-0042-1751423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This Account describes new reactions that have been developed in the Johnson laboratories at UNC Chapel Hill enabled by considerations of N-O bond cleavage. Three main case studies are highlighted: the metal-catalyzed electrophilic amination of O-acyl hydroxyl amines, multihetero-Cope rearrangements driven by O-N bond breakage, and merged dearomatization/N=O cycloadditions for the synthesis of complex 4-aminocyclohexanols such as those found in the natural product tetrodotoxin.
Collapse
Affiliation(s)
- Jacob G Robins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
7
|
Holst DE, Dorval C, Winter CK, Guzei IA, Wickens ZK. Regiospecific Alkene Aminofunctionalization via an Electrogenerated Dielectrophile. J Am Chem Soc 2023. [PMID: 37023348 DOI: 10.1021/jacs.3c01137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Modular strategies to rapidly increase molecular complexity have proven immensely synthetically valuable. In principle, transformation of an alkene into a dielectrophile presents an opportunity to deliver two unique nucleophiles across an alkene. Unfortunately, the selectivity profiles of known dielectrophiles have largely precluded this deceptively simple synthetic approach. Herein, we demonstrate that dicationic adducts generated through electrolysis of alkenes and thianthrene possess a unique selectivity profile relative to more conventional dielectrophiles. Specifically, these species undergo a single and perfectly regioselective substitution reaction with phthalimide salts. This observation unlocks an appealing new platform for aminofunctionalization reactions. As an illustrative example, we implement this new reactivity paradigm to address a longstanding synthetic challenge: alkene diamination with two distinct nitrogen nucleophiles. Studies into the mechanism of this process reveal a key alkenyl thianthrenium salt intermediate that controls the exquisite regioselectivity of the process and highlight the importance of proton sources in controlling the reactivity of alkenyl sulfonium salt electrophiles.
Collapse
Affiliation(s)
- Dylan E Holst
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Céline Dorval
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Casey K Winter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Kumar R, Khanna Y, Kaushik P, Kamal R, Khokhar S. Recent Advancements on Metal-Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chem Asian J 2023; 18:e202300017. [PMID: 36869415 DOI: 10.1002/asia.202300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The oxidative aminative vicinal difunctionalization of alkenes or related chemical feedstocks has emerged as sustainable and multipurpose strategies that can efficiently construct two -N bonds, and simultaneously prepare the synthetically fascinating molecules and catalysis in organic synthesis that typically required multi-step reactions. This review summarized the impressive breakthroughs on synthetic methodologies (2015-2022) documented especially over inter/intra-molecular vicinal diamination of alkenes with electron-rich or deficient diverse nitrogen sources. These unprecedented strategies predominantly involved iodine-based reagents/catalysts, which resent the interest of organic chemists due to their impressive role as flexible, non-toxic, and environmentally friendly reagents, resulting in a wide variety of synthetically useful organic molecules. Moreover, the information collected also describes the significant role of catalyst, terminal oxidant, substrate scope, synthetic applications, and their unsuccessful results to highlight the limitations. Special emphasis has been given to proposed mechanistic pathways to determine the key factors governing the issues of regioselectivity, enantioselectivity, and diastereoselectivity ratios.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Yugam Khanna
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Parul Kaushik
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| | - Shiwani Khokhar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| |
Collapse
|
9
|
O-Benzoylhydroxylamines: A Versatile Electrophilic Aminating Reagent for Transition Metal-Catalyzed C–N Bond-Forming Reactions. Top Curr Chem (Cham) 2023; 381:4. [DOI: 10.1007/s41061-022-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
|
10
|
Saryazdi S, Parkin S, Grossman RB. 1,2-Diamination of Alkenes via 1,3-Dipolar Cycloaddition with Azidium Ions or Azides. Org Lett 2023; 25:331-335. [PMID: 36626894 DOI: 10.1021/acs.orglett.2c03908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We describe two new methods for the 1,2-diamination of alkenes. First, either an azidium ion (ArN═N+═NAr) undergoes 1,3-dipolar cycloaddition with an alkene to give a 1,2,3-triazolinium ion directly, or an intramolecular azide-alkene cycloaddition followed by N-benzylation provides the same. Second, hydrogenation of the 1,2,3-triazolinium ion over Raney Ni excises the central N atom and gives the 1,2-diamine. The stereochemistry of the alkene is usually, but not always, preserved in the 1,2-diamine.
Collapse
Affiliation(s)
- Setareh Saryazdi
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Robert B Grossman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
11
|
Das A, Waser J. Pd-catalyzed functionalization of alkenes and alkynes using removable tethers. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Wang CC, Wang XL, Zhang QL, Liu JT, Ma ZW, Liu Z, Chen YJ. Direct synthesis for N2-unprotected five-membered cyclic guanidines by regioselective [3+2] annulation of aziridines and cyanamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01926k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient [3+2] annulation of 2-substituted aziridines and N-tosyl cyanamides via domino regioselective ring-opening/5-exo-dig cyclization procedure has been developed, allowing the direct preparation for N2-unprotected five-membered cyclic guanidines...
Collapse
|
13
|
Kirsch JK, Gonzalez GA, Faculak MS, Wolfe JP. Pd-Catalyzed Alkene Diamination Reactions with O-Benzoylhydroxylamine Electrophiles: Evidence Supporting a Pd(II/IV) Catalytic Cycle, the Role of 2,4-Pentanedione Derivatives as Ligands, and Expanded Substrate Scope. J Org Chem 2021; 86:11378-11387. [PMID: 34344155 DOI: 10.1021/acs.joc.1c00877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article describes continued studies on Pd-catalyzed alkene diamination reactions between N-allylguanidines or ureas and O-benzoylhydroxylamine derivatives, which serve as N-centered electrophiles. The transformations generate cyclic guanidines and ureas bearing dialkylaminomethyl groups in moderate to good yield. We describe new mechanistic experiments that have led to a revised mechanistic hypothesis that involves a key oxidative addition of the electrophile to a PdII complex, followed by reductive elimination from PdIV to form the alkyl carbon-nitrogen bond. In addition, we demonstrate that acac, not phosphine, serves as a key ligand for palladium. Moreover, simple acac derivatives bearing substituted aryl groups outperform acac in the catalytic reactions, and phosphines inhibit catalysis in many cases. These discoveries have led to a significant expansion in the scope of this chemistry, which now allows for the coupling of a variety of cyclic amines, acyclic secondary amines, and primary amines. In addition, we also demonstrate that these new conditions allow for the use of amide nucleophiles, in addition to guanidines and ureas.
Collapse
Affiliation(s)
- Janelle K Kirsch
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Gabriel A Gonzalez
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Mason S Faculak
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - John P Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
14
|
Chen J, Zhu YP, Li JH, Wang QA. External-oxidant-free amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with O-benzoylhydroxylamines. Chem Commun (Camb) 2021; 57:5215-5218. [PMID: 33908971 DOI: 10.1039/d1cc01565f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new copper-catalyzed two-component amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with O-benzoylhydroxylamines as the benzoyloxy sources is developed. Chemoselectivity of this method toward amino-benzoyloxylation or oxy-benzoyloxylation of alkenyl ketoximes relies on the position of the tethered olefins, and provides an external-oxidant-free alkene difunctionalization route that directly utilizes O-benzoylhydroxylamines as the benzoyloxy radical precursors and internal oxidants for the divergent synthesis of cyclic nitrones and isoxazolines.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, China.
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China. and School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, China. and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
15
|
Wu Z, Hu M, Li J, Wu W, Jiang H. Recent advances in aminative difunctionalization of alkenes. Org Biomol Chem 2021; 19:3036-3054. [PMID: 33734255 DOI: 10.1039/d0ob02446e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alkenes are versatile building blocks in modern organic synthesis. In the difunctionalization reactions of alkenes, two functional groups can be simultaneously introduced into the π system. This is an efficient strategy for the synthesis of multifunctional compounds with complex structures and has the advantages of atom and step economy. Nitrogen-containing organic compounds are widely found in natural products and synthetic compounds, such as dyes, pesticides, medicines, artificial resins, and so on. Many natural products with high biological activity and a broad range of drugs have nitrogen-containing functional groups. The research on the construction methods of C-N bonds has always been one of the most important tasks in organic synthesis, especially in drug synthesis, and the synthetic methods starting from simple and easily available raw materials have been a topic of interest to chemists. The aminative difunctionalization of alkenes can efficiently construct C-N bonds, and at the same time, prepare some compounds that usually require multiple steps of reaction. It is one of the most effective strategies for the simple and efficient synthesis of functionalized nitrogen-containing compounds. This review outlines the major developments focusing on the transition metal-catalyzed or metal-free diamination, aminohalogenation, aminocarbonation, amino-oxidation and aminoboronation reactions of alkenes from 2015-2020.
Collapse
Affiliation(s)
- Ziying Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
16
|
Wang CC, Qu YL, Liu XH, Ma ZW, Yang B, Liu ZJ, Chen XP, Chen YJ. Synthesis of Five-Membered Cyclic Guanidines via Cascade [3 + 2] Cycloaddition of α-Haloamides with Organo-cyanamides. J Org Chem 2021; 86:3546-3554. [PMID: 33538590 DOI: 10.1021/acs.joc.0c02932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The convenient preparation of N2-unprotected five-membered cyclic guanidines was achieved through a cascade [3 + 2] cycloaddition between organo-cyanamides and α-haloamides under mild conditions in good to excellent yields (up to 99%). The corresponding cyclic guanidines could be easily transformed into hydantoins via hydrolysis.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China.,College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Ya-Li Qu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Xue-Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| | - Zhi-Jing Liu
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Xiao-Pei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450044, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|
17
|
Ohuchi S, Koyama H, Shigehisa H. Catalytic Synthesis of Cyclic Guanidines via Hydrogen Atom Transfer and Radical-Polar Crossover. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shunya Ohuchi
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Hiroki Koyama
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
18
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Duangjan C, Rukachaisirikul V, Kaeobamrung J. Synthesis of imidazolidin-2-ones via the cascade reactions of α-chloroaldoxime O-methanesulfonates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Rao Kovvuri VR, Xue H, Romo D. Generation and Reactivity of 2-Amido-1,3-diaminoallyl Cations: Cyclic Guanidine Annulations via Net (3 + 2) and (4 + 3) Cycloadditions. Org Lett 2020; 22:1407-1413. [PMID: 32009413 DOI: 10.1021/acs.orglett.0c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toward a method for direct conversion of alkenes to cyclic guanidines, we report that 1,3-dipolar cycloadditions of 2-amido-1,3-diamino allylic cations with alkenes provide a new method for direct cyclic guanidine annulation. Generated under oxidative conditions, the 2-amido-1,3-diaminoallyl cations react as 1,3-dipoles providing rapid access to 2-amino imidazolines through net (3 + 2) cycloadditions. The utility is demonstrated through a concise synthesis of the oroidin alkaloid, phakellin. The described 1,3-dipole also participates in net (4 + 3) cycloadditions with dienes.
Collapse
Affiliation(s)
- V Raghavendra Rao Kovvuri
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , Texas 76798 , United States
| | - Haoran Xue
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , Texas 76798 , United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , Texas 76798 , United States
| |
Collapse
|
21
|
Bornowski EC, Hinds EM, White DR, Nakamura Y, Wolfe JP. Pd-Catalyzed Alkene Difunctionalization Reactions of Enolates for the Synthesis of Substituted Bicyclic Cyclopentanes. Org Process Res Dev 2019; 23:1610-1630. [PMID: 33597795 PMCID: PMC7886259 DOI: 10.1021/acs.oprd.9b00248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Palladium-catalyzed alkene difunctionalization reactions between alkenes bearing tethered aryl or alkenyl triflates and enolate nucleophiles are described. The transformations form two C-C bonds, a ring, and up to two stereocenters, while producing substituted cyclopentane derivatives that contain appended carbonyl functionality. Products are formed with up to >20:1 diastereoselectivity, and formation of sterically congested bonds between quaternary carbon atoms is feasible.
Collapse
Affiliation(s)
| | | | | | - Yusuke Nakamura
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan, 48109-1055, United States
| | - John P. Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan, 48109-1055, United States
| |
Collapse
|
22
|
Abstract
At the advent of cross-coupling chemistry, carbon electrophiles based on halides or pseudohalides were the only suitable electrophilic coupling partners. Almost two decades passed before the first cross-coupling reaction of heteroatom-based electrophiles was reported. Early work by Murai and Tanaka initiated investigations into silicon electrophiles. Narasaka and Johnson pioneered the way in the use of nitrogen electrophiles, while Suginome began the exploration of boron electrophiles. The chemistry reviewed within provides perspective on the use of heteroatomic electrophiles, specifically silicon-, nitrogen-, boron-, oxygen-, and phosphorus-based electrophiles in transition-metal catalyzed cross-coupling. For the purposes of this review, a loose definition of cross-coupling is utilized; all reactions minimally proceed via an oxidative addition event. Although not cross-coupling in a traditional sense, we have also included catalyzed reactions that join a heteroatomic electrophile with an in situ generated nucleophile. However, for brevity, those involving hydroamination or C-H activation as a key step are largely excluded. This work includes primary references published up to and including October 2018.
Collapse
Affiliation(s)
- Katerina M Korch
- Department of Chemistry and Biochemistry , University of Delaware Newark , Delaware 19716 , United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry , University of Delaware Newark , Delaware 19716 , United States
| |
Collapse
|
23
|
Yang Y, Yuan F, Ren X, Wang G, Zhao W, Tang X, Guo M. Copper-Catalyzed Oxydifluoroalkylation of Hydroxyl-Containing Alkenes. J Org Chem 2019; 84:4507-4516. [DOI: 10.1021/acs.joc.9b00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangwei Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
24
|
Recent Advances in the Catalytic Synthesis of Imidazolidin-2-ones and Benzimidazolidin-2-ones. Catalysts 2019. [DOI: 10.3390/catal9010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
2-Imidazolidinone and its analogues are omnipresent structural motifs of pharmaceuticals, natural products, chiral auxiliaries, and intermediates in organic syntheses. Over the years, continuous efforts have been addressed to the development of sustainable and more efficient protocols for the synthesis of these heterocycles. This review gives a summary of the catalytic strategies to access imidazolidin-2-ones and benzimidazolidin-2-ones that have appeared in the literature from 2010 to 2018. Particularly important contributions beyond the timespan will be mentioned. The review is organized in four main chapters that identify the most common approaches to imidazolidin-2-one derivatives: (1) the direct incorporation of the carbonyl group into 1,2-diamines, (2) the diamination of olefins, (3) the intramolecular hydroamination of linear urea derivatives and (4) aziridine ring expansion. Methods not included in this classification will be addressed in the miscellaneous section.
Collapse
|
25
|
Struble TJ, Lankswert HM, Pink M, Johnston JN. Enantioselective Organocatalytic Amine-Isocyanate Capture-Cyclization: Regioselective Alkene Iodoamination for the Synthesis of Chiral Cyclic Ureas. ACS Catal 2018; 8:11926-11931. [PMID: 31131150 DOI: 10.1021/acscatal.8b03708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ureas of chiral diamines are prominent features of therapeutics, chiral auxiliaries, and intermediates in complex molecule synthesis. Although many methods for diamine synthesis are available, metal-free enantioselective alkene functionalizations to make protected 1,2- and 1,3-diamines from simple achiral starting materials are rare, and a single reagent that accesses a cross-section of each congener with high enantiomeric excess is not available. We describe a method to synthesize enantioenriched cyclic 5- and 6-membered ureas from allylic amines and an isocyanate using a C2-symmetric BisAmidine (BAM) catalyst that delivers N-selectivity from an ambident sulfonyl imide intermediate, overcoming electronic and steric deactivation at nitrogen. The geometry of 1,2-disubstituted alkenes is correlated to 5-exo and 6-endo cyclizations without altering alkene face selectivity, which is unexpectedly opposite that observed with O-nucleophiles. Straightforward product manipulations to diamine and imidazolidinone derivatives are underscored by the synthesis of an NK1 antagonist.
Collapse
Affiliation(s)
- Thomas J. Struble
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Hannah M. Lankswert
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Maren Pink
- Indiana University Molecular Structure Center, Bloomington, Indiana 47405, United States
| | - Jeffrey N. Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| |
Collapse
|