1
|
Xie R, Li W, Ge Y, Zhou Y, Xiao G, Zhao Q, Han Y, Li Y, Chen G. Late-stage guanine C8-H alkylation of nucleosides, nucleotides, and oligonucleotides via photo-mediated Minisci reaction. Nat Commun 2024; 15:2549. [PMID: 38514662 PMCID: PMC10957873 DOI: 10.1038/s41467-024-46671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Chemically modified nucleosi(ti)des and functional oligonucleotides (ONs, including therapeutic oligonucleotides, aptamer, nuclease, etc.) have been identified playing an essential role in the areas of medicinal chemistry, chemical biology, biotechnology, and nanotechnology. Introduction of functional groups into the nucleobases of ONs mostly relies on the laborious de novo chemical synthesis. Due to the importance of nucleosides modification and aforementioned limitations of functionalizing ONs, herein, we describe a highly efficient site-selective alkylation at the C8-position of guanines in guanosine (together with its analogues), GMP, GDP, and GTP, as well as late-stage functionalization of dinucleotides and single-strand ONs (including ssDNA and RNA) through photo-mediated Minisci reaction. Addition of catechol to assist the formation of alkyl radicals via in situ generated boronic acid catechol ester derivatives (BACED) markedly enhances the yields especially for the reaction of less stable primary alkyl radicals, and is the key to success for the post-synthetic alkylation of ONs. This method features excellent chemoselectivity, no necessity for pre-protection, wide range of substrate scope, various free radical precursors, and little strand lesion. Downstream applications in disease treatment and diagnosis, or as biochemical probes to study biological processes after linking with suitable fluorescent compounds are expected.
Collapse
Affiliation(s)
- Ruoqian Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanlu Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuhua Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China
| | - Guolan Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yunxi Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China.
| |
Collapse
|
2
|
Abstract
Azines, such as pyridines, quinolines, pyrimidines, and pyridazines, are widespread components of pharmaceuticals. Their occurrence derives from a suite of physiochemical properties that match key criteria in drug design and is tunable by varying their substituents. Developments in synthetic chemistry, therefore, directly impact these efforts, and methods that can install various groups from azine C-H bonds are particularly valuable. Furthermore, there is a growing interest in late-stage functionalization (LSF) reactions that focus on advanced candidate compounds that are often complex structures with multiple heterocycles, functional groups, and reactive sites. Because of factors such as their electron-deficient nature and the effects of the Lewis basic N atom, azine C-H functionalization reactions are often distinct from their arene counterparts, and the application of these reactions in LSF contexts is difficult. However, there have been many significant advances in azine LSF reactions, and this review will describe this progress, much of which has occurred over the past decade. It is possible to categorize these reactions as radical addition processes, metal-catalyzed C-H activation reactions, and transformations occurring via dearomatized intermediates. Substantial variation in reaction design within each category indicates both the rich reactivity of these heterocycles and the creativity of the approaches involved.
Collapse
Affiliation(s)
- Celena M Josephitis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
4
|
Sarmah BK, Konwar M, Das A. Copper-Catalyzed Oxidative Dehydrogenative Reaction of Quinoline- N-Oxides with Donor-Acceptor Cyclopropanes: Installation of a Tertiary Alkyl Motif at C2 Position. Org Lett 2021; 23:8390-8395. [PMID: 34633204 DOI: 10.1021/acs.orglett.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed oxidative dehydrogenative reaction of quinoline N-oxides with donor-acceptor cyclopropanes has been demonstrated to construct C2-alkylated quinolines containing a γ-keto diester motif. The use of molecular oxygen as an oxidant, excellent site-selectivity, and good functional group tolerance are the important features in this process. The preliminary mechanistic studies demonstrate that the catalyst plays a dual role as a Lewis acid and a redox catalyst.
Collapse
Affiliation(s)
- Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Affiliation(s)
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique CNRS UMR 7652 Ecole Polytechnique FR-91128 Palaiseau France
| |
Collapse
|
6
|
Shan QC, Hu LM, Qin W, Hu XH. Copper-Catalyzed Cross-Nucleophile Coupling of β-Allenyl Silanes with Tertiary C-H Bonds: A Radical Approach to Branched 1,3-Dienes. Org Lett 2021; 23:6041-6045. [PMID: 34279969 DOI: 10.1021/acs.orglett.1c02112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Described herein is a distinctive approach to branched 1,3-dienes through oxidative coupling of two nucleophilic substrates, β-allenyl silanes, and hydrocarbons appending latent functionality by copper catalysis. Notably, C(sp3)-H dienylation proceeded in a regiospecific manner, even in the presence of competitive C-H bonds that are capable of occurring hydrogen atom transfer process, such as those located at benzylic and other tertiary sites, or adjacent to an oxygen atom. Control experiments support the intermediacy of functionalized alkyl radicals.
Collapse
Affiliation(s)
- Qi-Chao Shan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Abstract
Minisci-type reactions have been widely known as reactions that involve the addition
of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss.
While the originally developed protocols for radical generation remain in active use today, in
recent years, the new array of radical generation strategies have allowed the use of a wider
variety of radical precursors that often operate under milder and more benign conditions. New
transformations based on free radical reactivity are now available to a synthetic chemist, to
utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis
and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical
precursors, have become popular approaches. Our review will cover the remarkable literature
that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an
attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications
in organic synthesis.
Collapse
Affiliation(s)
- Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
8
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
9
|
Rumyantsev M, Korablev IA, Rumyantsev S. The reaction of potassium xanthates with five-membered cyclic carbonates: selectivity of the underlying cascade reactions and mechanistic insights. RSC Adv 2020; 10:36303-36316. [PMID: 35517935 PMCID: PMC9056968 DOI: 10.1039/d0ra07428d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
In this paper we describe the reaction between various potassium xanthates (potassium O-methyl xanthate, potassium O-isobutyl xanthate, xanthate functionalized MPEGs, etc.) and common five-membered cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). The reaction was carried out under catalyst-free conditions. Intensive evolution of both CO2 and COS and the simultaneous formation of a rich precipitate were found to be the characteristic features of the studied reaction. It was determined that the precipitate consists of various alkoxides, including potassium ethane-1,2-bis(olate) (EC-based reaction) and potassium propane-1,2-bis(olate) (PC-based reaction) and alkoxide-terminated sulfides. It was also demonstrated that the resulting liquid phase (the mother liquor) contains polyalkylene sulfides whose number average molecular weight (M n) was found to be in the range 400-550 Da and 300-400 Da for EC- and PC-based oligomers, respectively. Further studies revealed that the distribution between major products varies considerably with variation in the parameters of the reaction. Thus, by applying reduced pressure conditions and a temperature equal to 90 °C, up to 95% selectivity towards the formation of alkoxide-terminated sulfide (e.g., potassium 1,1'-thiobis(propan-2-olate)) was achieved. On the other hand, selectivity towards alkoxide formation equal to 98% was achieved for the reactions carried out in the presence of water. As a general trend, it was also established that a shift in balance between products towards the formation of sulfur-containing products (sulfides) occurs with an appropriate increase in the temperature of the reaction. Based on the obtained experimental data supplemented with quantum-chemical calculations (NBO analysis and scanning of the potential energy surface), the mechanisms of the cascade reactions underlying the formation of key intermediates and final products were also proposed.
Collapse
Affiliation(s)
- Misha Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev 24 Minin St. 603950 Nizhny Novgorod Russia +7 8313 344730 +7 8313 344730
| | - Ilia A Korablev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev 24 Minin St. 603950 Nizhny Novgorod Russia +7 8313 344730 +7 8313 344730
- Lobachevsky State University of Nizhny Novgorod 23 Prospekt Gagarina (Gagarin Avenue) 603950 Nizhny Novgorod Russia
| | - Sergey Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev 24 Minin St. 603950 Nizhny Novgorod Russia +7 8313 344730 +7 8313 344730
| |
Collapse
|
10
|
Zard SZ. The Xanthate Route to Indolines, Indoles, and their Aza Congeners. Chemistry 2020; 26:12689-12705. [DOI: 10.1002/chem.202001341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique, UMR 7652 Ecole Polytechnique 91128 Palaiseau France
| |
Collapse
|
11
|
|
12
|
Huang Q, Michalland J, Zard SZ. Alternating Radical Stabilities: A Convergent Route to Terminal and Internal Boronates. Angew Chem Int Ed Engl 2019; 58:16936-16942. [DOI: 10.1002/anie.201906497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Huang
- Laboratoire de Synthèse Organique, CNRS UMR 7652Ecole polytechnique Route de Saclay 91128 Palaiseau Cedex France
| | - Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652Ecole polytechnique Route de Saclay 91128 Palaiseau Cedex France
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652Ecole polytechnique Route de Saclay 91128 Palaiseau Cedex France
| |
Collapse
|
13
|
Huang Q, Michalland J, Zard SZ. Alternating Radical Stabilities: A Convergent Route to Terminal and Internal Boronates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Huang
- Laboratoire de Synthèse Organique, CNRS UMR 7652Ecole polytechnique Route de Saclay 91128 Palaiseau Cedex France
| | - Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652Ecole polytechnique Route de Saclay 91128 Palaiseau Cedex France
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652Ecole polytechnique Route de Saclay 91128 Palaiseau Cedex France
| |
Collapse
|
14
|
|
15
|
Proctor RSJ, Phipps RJ. Recent Advances in Minisci‐Type Reactions. Angew Chem Int Ed Engl 2019; 58:13666-13699. [DOI: 10.1002/anie.201900977] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Rupert S. J. Proctor
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J. Phipps
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
16
|
Affiliation(s)
- Rupert S. J. Proctor
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW Großbritannien
| | - Robert J. Phipps
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW Großbritannien
| |
Collapse
|
17
|
Tercenio QD, Alexanian EJ. Nickel-catalyzed, ring-forming aromatic C-H alkylations with unactivated alkyl halides. Tetrahedron 2019; 75:4143-4149. [PMID: 31406389 PMCID: PMC6690380 DOI: 10.1016/j.tet.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of a nickel-catalyzed C-H alkylation of aromatic substrates with unactivated alkyl halides is described. This carbocyclization facilitates the synthesis of diverse fused ring systems from simple aromatic substrates and is an attractive alternative to traditional polar or radical-mediated ring formations. The present system uses unactivated primary and secondary alkyl bromides and chlorides, while avoiding the use of precious palladium catalysts and more reactive alkyl halides commonly used in related C-H alkylations.
Collapse
Affiliation(s)
- Quentin D. Tercenio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
18
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
19
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
20
|
Pitre SP, Muuronen M, Fishman DA, Overman LE. Tertiary Alcohols as Radical Precursors for the Introduction of Tertiary Substituents into Heteroarenes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00405] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Spencer P. Pitre
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Mikko Muuronen
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Larry E. Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
21
|
Tian MQ, Wang C, Hu XH, Loh TP. Divergent C–H Oxidative Radical Functionalization of Olefins to Install Tertiary Alkyl Motifs Enabled by Copper Catalysis. Org Lett 2019; 21:1607-1611. [DOI: 10.1021/acs.orglett.9b00142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming-Qing Tian
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Cong Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
22
|
Rout SK, Marghem G, Lan J, Leyssens T, Riant O. A radical exchange process: synthesis of bicyclo[1.1.1]pentane derivatives of xanthates. Chem Commun (Camb) 2019; 55:14976-14979. [DOI: 10.1039/c9cc07610g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new approach for the installation of the bicyclo[1.1.1]pentane unit on the xanthate moiety by means of a radical exchange process.
Collapse
Affiliation(s)
- Saroj Kumar Rout
- Institute of Condensed Matter and Nanoscience. Molecular Chemistry
- Materials and Catalysis Division
- Université Catholique de Louvain
- Belgium
| | - Gilles Marghem
- Institute of Condensed Matter and Nanoscience. Molecular Chemistry
- Materials and Catalysis Division
- Université Catholique de Louvain
- Belgium
| | - Junjie Lan
- Institute of Condensed Matter and Nanoscience. Molecular Chemistry
- Materials and Catalysis Division
- Université Catholique de Louvain
- Belgium
| | - Tom Leyssens
- Institute of Condensed Matter and Nanoscience. Molecular Chemistry
- Materials and Catalysis Division
- Université Catholique de Louvain
- Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanoscience. Molecular Chemistry
- Materials and Catalysis Division
- Université Catholique de Louvain
- Belgium
| |
Collapse
|
23
|
|