1
|
Nasibullina ER, Mendogralo EY, Merkushev AA, Makarov AS, Uchuskin MG. Oxidative Transformation of 2-Furylanilines into Indolin-3-ones. J Org Chem 2024; 89:6602-6606. [PMID: 38635314 DOI: 10.1021/acs.joc.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Oxidation of 2-furylaninlies with m-CPBA followed by treatment with a base provides access to functionalized indolin-3-ones. The designed oxidative transformation utilizes an underassessed chemical behavior of furyl-containing amines to form a C-N bond via engaging a β-carbon atom of the furan core upon a ring-forming step, thereby providing an alternative disconnection toward nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton A Merkushev
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| |
Collapse
|
2
|
Kumar R, Grover N, Jain N. 1O 2 Mediated Conversion of β-Enaminonitriles to α-Keto Amides Photosensitized by Recyclable H 2TPP in Visible Light. J Org Chem 2024; 89:4722-4732. [PMID: 38502937 DOI: 10.1021/acs.joc.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We report a one-step approach for the conversion of β-enaminonitriles to synthetically versatile α-keto amides in moderate to high yields under visible light irradiation photosensitized by porphyrins. The method is mild, cost-effective, and sustainable and requires air as the sole reagent/oxidant. The reaction is believed to proceed via an ene-type pathway initiated by 1O2, followed by dehydration, imine hydrolysis, and subsequent nucleophilic substitution of the cyanide group by amine. The method offers a broad substrate scope and has also been extended for synthesis of α-keto esters with aliphatic alcohols as nucleophiles. The porphyrin recovered after the reaction can be reused multiple times.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| | - Nitika Grover
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| |
Collapse
|
3
|
Quintavalla A, Carboni D, Brusa A, Lombardo M. Selective Hydrofunctionalization of N-Allenyl Derivatives with Heteronucleophiles Catalyzed by Brønsted Acids. J Org Chem 2024; 89:2320-2342. [PMID: 38298114 DOI: 10.1021/acs.joc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, we present a novel and environmentally sustainable protocol for the γ-hydrofunctionalization of N-allenyl compounds using various heteronucleophiles catalyzed solely by simple Brønsted acids. The method displays remarkable attributes, highlighting its sustainability, efficiency, regio- and stereoselectivity, as well as its versatile applicability to diverse heteroatom-containing enamides. Notably, our approach eliminates the need for metal catalysts and toxic solvents, representing a significant advancement in greener chemistry practices. We demonstrate the broad scope of our protocol by successfully scaling up reactions to gram-scale syntheses, underscoring its robustness for potential industrial implementation. The resulting γ-heterosubstituted enamides offer new possibilities for further synthetic transformations, yielding highly functionalized compounds with diverse applications. Mechanistic investigations reveal the pivotal role of CSA as a catalyst, enabling alcohol addition via a covalent activation mode.
Collapse
Affiliation(s)
- Arianna Quintavalla
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Davide Carboni
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Alessandro Brusa
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Lombardo
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
4
|
Bosveli A, Griboura N, Kampouropoulos I, Kalaitzakis D, Montagnon T, Vassilikogiannakis G. The Rapid Synthesis of Colibactin Warhead Model Compounds Using New Metal-Free Photocatalytic Cyclopropanation Reactions Facilitates the Investigation of Biological Mechanisms. Chemistry 2023; 29:e202301713. [PMID: 37452669 DOI: 10.1002/chem.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Nefeli Griboura
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | |
Collapse
|
5
|
Lei T, Cheng YY, Han X, Zhou C, Yang B, Fan XW, Chen B, Tung CH, Wu LZ. Lewis Acid-Relayed Singlet Oxygen Reaction with Enamines: Selective Dimerization of Enamines to Pyrrolin-4-ones. J Am Chem Soc 2022; 144:16667-16675. [PMID: 36047993 DOI: 10.1021/jacs.2c07450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Singlet oxygen (1O2)-mediated oxidation represents an attractive strategy for incorporation of oxygen atoms from air under mild and environmentally benign conditions. However, the 1O2 reaction with enamine suffers from fragmentation, leading to very unsuccessful transformation. Here, Lewis acid is introduced to intercept [2 + 2] or "ene" reaction intermediates of the 1O2 reaction and enables oxidative dimerization of enamines to produce pyrrolin-4-ones in good to excellent yields. Mechanistic studies reveal the formation of the imino ketone intermediate from the interaction of 1O2 and enamine, which is able to interact with Lewis acid, relaying the 1O2 reaction in enamine chemistry. For the first time, selective cross-dimerization of two different enamines is achieved. Due to the advantages of mild conditions, high chemoselectivity, and up to 99% yield, a promising strategy has been developed for synthesizing aza-heterocycles under ambient conditions, which can be further applied for the synthesis of imidazolone, quinoxaline, and highly functionalized imine.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xu Han
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiu-Wei Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Lei ZL, Huang DK, Liu Q, Chen HY, Gao YN, Liu JT, Liu ZJ. Decarboxylative aldol reaction of α,α-difluoro-β-keto acids and isatins: A facile synthesis of 3-difluoroalkyl-3-hydroxyoxindole derivatives. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Olivier WJ, Smith JA, Bissember AC. Synthesis of Pyrrolidine- and γ-Lactam-Containing Natural Products and Related Compounds from Pyrrole Scaffolds. CHEM REC 2021; 22:e202100277. [PMID: 34862727 DOI: 10.1002/tcr.202100277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Polycyclic alkaloid natural products featuring pyrrolidine and pyrrolidinone motifs remain enduring targets of total synthesis endeavors. Pyrrole and its derivatives have been exploited to access many such frameworks, including alkaloids belonging to the Aspidosperma, Stemona, and batzelladine families. In this article, a selection of exemplars that highlight the utility of pyrrole-based approaches to facilitate total syntheses of pyrrolidine- and pyrrolidinone-containing alkaloids and related molecules are showcased.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences-Chemistry, University of Tasmania Hobart, Tasmania, Australia
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania Hobart, Tasmania, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania Hobart, Tasmania, Australia
| |
Collapse
|
8
|
Yang L, Wang J, Wang Y, Li X, Liu W, Zhang Z, Xie X. Stereoselective Synthesis of cis-2-Ene-1,4-diones via Aerobic Oxidation of Substituted Furans Catalyzed by ABNO/HNO 3. J Org Chem 2021; 86:14311-14320. [PMID: 34618466 DOI: 10.1021/acs.joc.1c00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a highly efficient and selective catalytic system, ABNO (9-azabicyclo-[3.3.1]nonane N-oxyl)/HNO3, for the aerobic oxidation of substituted furans to cis-2-ene-1,4-diones under mild reaction conditions using oxygen as the oxidant. The catalyst system is amenable to various substituted (mon-, di-, and tri-) furans and tolerates diverse functional groups, including cyano, nitro, naphthyl, ketone, ester, heterocycle, and even formyl groups. Based on the control and 18O-labeling experiments, the possible mechanism of the oxidation is proposed.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yue Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaotong Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Shanghai Institute of Organic Chemistry, Chines Academy of Sciences, 345 Fenglin Road, Shanghai 200032, China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Hoxha S, Kalaitzakis D, Bosveli A, Montagnon T, Vassilikogiannakis G. One-Pot Transformation of Furans into 1-Azaspirocyclic Alkaloid Frameworks Induced by Visible Light. Org Lett 2021; 23:5354-5358. [PMID: 34180682 DOI: 10.1021/acs.orglett.1c01661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-value 1-azaspirocyclic scaffolds have been made from simple and readily accessible furan precursors in a single operation. The protocol is a one-pot sequence using highly sustainable conditions (oxygen, visible light, and a favored green solvent) that leads to a dramatic increase in molecular complexity. The initial substrates can include functionalities that are suitable for further elaboration; in this way, the pruned polycyclic skeletons of the stemonamine, cylindricine, and lepadiformine natural products were rapidly accessed.
Collapse
Affiliation(s)
- Stela Hoxha
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|
10
|
Hasegawa E, Yoshioka N, Tanaka T, Nakaminato T, Oomori K, Ikoma T, Iwamoto H, Wakamatsu K. Sterically Regulated α-Oxygenation of α-Bromocarbonyl Compounds Promoted Using 2-Aryl-1,3-dimethylbenzimidazolines and Air. ACS OMEGA 2020; 5:7651-7665. [PMID: 32280909 PMCID: PMC7144160 DOI: 10.1021/acsomega.0c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using Me2S reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI•-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI•-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI•-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- E-mail:
| | - Naoki Yoshioka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Taisei Nakaminato
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department
of Chemistry, Faculty of Science, Okayama
University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
11
|
Montagnon T, Kalaitzakis D, Sofiadis M, Vassilikogiannakis G. The reticent tautomer: exploiting the interesting multisite and multitype reactivity of 4-pyrrolin-2-ones. Org Biomol Chem 2020; 18:180-190. [DOI: 10.1039/c9ob02471a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multisite and multitype reactivities of the highly versatile and valuable synthetic building block 4-pyrrolin-2-one are covered in this review.
Collapse
|
12
|
Fischer J, Mele L, Serier-Brault H, Nun P, Coeffard V. Controlling Photooxygenation with a Bifunctional Quinine-BODIPY Catalyst: towards Asymmetric Hydroxylation of β-Dicarbonyl Compounds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jérôme Fischer
- Université de Nantes; CEISAM UMR CNRS 6230; 44000 Nantes France
| | - Lucas Mele
- Université de Nantes; CEISAM UMR CNRS 6230; 44000 Nantes France
| | - Hélène Serier-Brault
- Institut des Matériaux Jean Rouxel; Université de Nantes; CNRS; 2 rue de la Houssinière, BP 32229 44322 Nantes France
| | - Pierrick Nun
- Université de Nantes; CEISAM UMR CNRS 6230; 44000 Nantes France
| | | |
Collapse
|
13
|
Marin L, Force G, Guillot R, Gandon V, Schulz E, Lebœuf D. Photooxygenation of 2-propargylfurans: a path to structurally diverse nitrogen-containing 5-membered rings. Chem Commun (Camb) 2019; 55:5443-5446. [PMID: 30976772 DOI: 10.1039/c9cc01197h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photooxygenation of 2-propargylfurans enabled access to original nitrogen-containing cyclopentenones and related compounds in a one-pot fashion. By employing readily-available substrates such as furans and amines, we succeeded in achieving a high degree of molecular complexity. Relying on the introduction of an alkyne moiety and tailored substrates, this transformation reveals a new facet for reaction sequences featuring the photooxygenation of furans.
Collapse
Affiliation(s)
- Lucile Marin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | | | | | | | | | | |
Collapse
|