1
|
Zhou S, Liu X, Zhang T, Loh TP, Tian JS. Cleavage and Reassembly of 1,3-Dicarbonyls with Enaminones to Synthesize Highly Functionalized Naphthols. Angew Chem Int Ed Engl 2024:e202421374. [PMID: 39688887 DOI: 10.1002/anie.202421374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The cleavage of carbon-carbon bonds and their subsequent reassembly into highly functionalized and useful molecules in an atom-efficient manner has always been a central focus in the realm of organic synthesis. In this report, we describe the construction of highly functionalized naphthol esters via a tandem reassembly process, driven by Ullmann-type coupling of enaminones and 1,3-dicarbonyl compounds. Mechanistic investigations suggest the involvement of C(sp2)-C(sp3) coupling, cyclization, two acyl migrations, aromatization, and additional transformations within this tandem sequence. This methodology offers several notable advantages, such as the use of inexpensive and easily accessible starting materials, the elimination of the need for expensive transition metal catalysis, simple operation in the atmosphere, exceptional compatibility with a wide range of substrates, and ease of conversion into drug scaffolds.
Collapse
Affiliation(s)
- Shuguang Zhou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
2
|
Mondal S, Giri CK, Baidya M. Enaminone-directed ruthenium(II)-catalyzed C-H activation and annulation of arenes with diazonaphthoquinones for polycyclic benzocoumarins. Chem Commun (Camb) 2023; 59:13187-13190. [PMID: 37850468 DOI: 10.1039/d3cc03999d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The weakly coordinating enaminone functionality has been leveraged for a C-H bond activation strategy under ruthenium catalysis and employed in the regioselective annulative coupling of arenes with diazonaphthoquinones, offering polycyclic benzocoumarins in very high yields. The enaminone motif plays a dual role and the protocol operates through a Ru(II)/Ru(IV) catalytic pathway which is amenable to the diversification of various pharmacophore-coupled substrates.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
3
|
Gao QC, Li YF, Xuan J, Hu XQ. Practical synthesis of isocoumarins via Rh(III)-catalyzed C-H activation/annulation cascade. Beilstein J Org Chem 2023; 19:100-106. [PMID: 36761471 PMCID: PMC9907013 DOI: 10.3762/bjoc.19.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Herein, we report an unprecedented Rh(III)-catalyzed C-H activation/annulation cascade of readily available enaminones with iodonium ylides towards the convenient synthesis of isocoumarins. This coupling system proceeds in useful chemical yields (up to 93%) via a cascade C-H activation, Rh-carbenoid migratory insertion and acid-promoted intramolecular annulation. The success of gram-scale reaction and diverse functionalization of isocoumarins demonstrated the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Qian-Ci Gao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, People’s Republic of China
| | - Yi-Fei Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, People’s Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People’s Republic of China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, People’s Republic of China
| |
Collapse
|
4
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Yang Z, Liu C, Lei J, Zhou Y, Gao X, Li Y. Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins. Chem Commun (Camb) 2022; 58:13483-13486. [PMID: 36383089 DOI: 10.1039/d2cc05899e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward approach to synthesise isocoumarins via Rh(III)-catalyzed C-H/C-C bond activation/annulation cascade of enaminones and iodonium ylides has been explored. The established protocol is characterized by an exceedingly simple reaction system, high regioselectivity and good functional group tolerance. Moreover, this strategy may provide a new route to cleavage of the C(sp2)-C(O) bond of unstrained ketones.
Collapse
Affiliation(s)
- Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yi Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Xiaohui Gao
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yaqian Li
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
6
|
Chen K, Zhao B, Liu Y, Wan JP. Thiazole-5-carbaldehyde Synthesis by Cascade Annulation of Enaminones and KSCN with Dess-Martin Periodinane Reagent. J Org Chem 2022; 87:14957-14964. [PMID: 36260927 DOI: 10.1021/acs.joc.2c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Dess-Martin periodinane (DMP) reagent-mediated reactions of tertiary enaminones with potassium thiocyanate for the synthesis of thiazole-5-carbaldehydes are developed. The product formation involves cascade hydroxyl thiocyanation of the C═C double bond, intramolecular hydroamination of the C≡N bond, and thiazole annulation by condensation on the ketone carbonyl site, representing novel reaction pathways in the reactions between enaminones and thiocyanate salt. DMP plays dual roles in mediating the free radical thiocyanation and inducing the unconventional selective thiazole-5-carbaldehyde formation by masking the in situ generated formyl group during the reaction process.
Collapse
Affiliation(s)
- Kang Chen
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yunyun Liu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Jie-Ping Wan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
7
|
Feng J, Wang Y, Gao L, Yu Y, Baell JB, Huang F. Electrochemical Synthesis of Polysubstituted Sulfonated Pyrazoles via Cascade Intermolecular Condensation, Radical-Radical Cross Coupling Sulfonylation, and Pyrazole Annulation. J Org Chem 2022; 87:13138-13153. [PMID: 36166815 DOI: 10.1021/acs.joc.2c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical synthesis of polysubstituted sulfonated pyrazoles from enaminones and sulfonyl hydrazides was established under metal-free, exogenous-oxidant-free, and mild conditions. By judicious choice of different electrochemical reaction conditions, NH2-functionalized enaminones or N,N-disubstituted enaminones can react with aryl/alkyl sulfonyl hydrazides to afford tetra- or trisubstituted sulfonated pyrazoles in moderate to good yields, respectively. The gram-scale electrochemical transformation demonstrated the efficiency and practicability of this synthetic strategy. In addition, the sulfonated NH-pyrazole can be obtained via the dissociation of the N-tosyl group. Mechanistic studies reveal that the electrochemical cascade reaction synthesis of polysubstituted sulfonated pyrazoles proceeded via the sequence of intermolecular condensation, radical-radical cross coupling sulfonylation, and pyrazole annulation.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuzhi Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Luoyu Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
8
|
Jiang Z, Zhou J, Zhu H, Liu H, Zhou Y. Rh(III)-Catalyzed [5 + 1] Annulation of Indole-enaminones with Diazo Compounds To Form Highly Functionalized Carbazoles. Org Lett 2021; 23:4406-4410. [PMID: 34018745 DOI: 10.1021/acs.orglett.1c01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel Rh(III)-catalyzed C-H activation/annulation cascade of indole-enaminones with diazo compounds was reported to construct diversely functionalized carbazole frameworks. The most notable characteristic is that this transformation could smoothly furnish a novel [5 + 1] cyclization product with good to excellent yields (up to 95%), accompanied by the thorough removal of acetyl and N,N-dimethyl groups of two substrates from the target products, rather than the normally expected [4 + 2] cyclization products.
Collapse
Affiliation(s)
- Zhidong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoran Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Synthesis of 6,7-Dihydro-1 H,5 H-pyrazolo[1,2- a]pyrazoles by Azomethine Imine-Alkyne Cycloadditions Using Immobilized Cu(II)-Catalysts. Molecules 2021; 26:molecules26020400. [PMID: 33451154 PMCID: PMC7828622 DOI: 10.3390/molecules26020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
A series of 12 silica gel-bound enaminones and their Cu(II) complexes were prepared and tested for their suitability as heterogeneous catalysts in azomethine imine-alkyne cycloadditions (CuAIAC). Immobilized Cu(II)-enaminone complexes showed promising catalytic activity in the CuAIAC reaction, but these new catalysts suffered from poor reusability. This was not due to the decoordination of copper ions, as the use of enaminone ligands with additional complexation sites resulted in negligible improvement. On the other hand, reusability was improved by the use of 4-aminobenzoic acid linker, attached to 3-aminopropyl silica gel via an amide bond to the enaminone over the more hydrolytically stable N-arylenamine C-N bond. The study showed that silica gel-bound Cu(II)-enaminone complexes are readily available and suitable heterogeneous catalysts for the synthesis of 6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles.
Collapse
|
10
|
Lou J, Han W, Liu Z, Xiao J. Rhodium-catalyzed enone carbonyl directed C–H activation for the synthesis of indanones containing all-carbon quaternary centers. Org Chem Front 2021. [DOI: 10.1039/d1qo00056j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodium(iii)-catalyzed enone carbonyl directed C–H activation/annulation of α-aroyl ketene dithioacetals with diazo compounds has been realized for the synthesis of β-quaternary indanones.
Collapse
Affiliation(s)
- Jiang Lou
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Zhuqing Liu
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| |
Collapse
|
11
|
Gabbutt CD, Heron BM, Lilly T, Ogwang OW, Zonidis D. Synthesis, C-H bond functionalisation and cycloadditions of 6-styryl-1,2-oxathiine 2,2-dioxides. Org Biomol Chem 2021; 19:6431-6446. [PMID: 34231619 DOI: 10.1039/d1ob01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 6-styryl-1,2-oxathiine 2,2-dioxides have been efficiently obtained by a two-step protocol from readily available (1E,4E)-1-(dimethylamino)-5-arylpenta-1,4-dien-3-ones involving a regioselective sulfene addition and subsequent Cope elimination. Pd-Mediated direct C-H bond functionalisation of the 6-styryl-1,2-oxathiine 2,2-dioxides and a wider selection of 5,6-diaryl substituted 1,2-oxathiine 2,2-dioxides proceeded smoothly to afford C-3 (hetero)aryl substituted analogues and the results are contrasted with those of a complementary bromination - Suzuki cross-coupling sequence. Whilst the cycloaddition of benzyne, derived from in situ fluoride initiated decomposition of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate, to the substituted 1,2-oxathiine 2,2-dioxides resulted in low yields of substituted naphthalenes, the addition of 4-phenyl-1,2,4-triazoline-3,5-dione to the 6-styryl-1,2-oxathiine 2,2-dioxides afforded novel 5,9-dihydro-1H-[1,2]oxathiino[5,6-c][1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)-dione 8,8-dioxides through a silica-mediated isomerisation of the initial [4 + 2] adducts.
Collapse
Affiliation(s)
- Christopher D Gabbutt
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - B Mark Heron
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Thomas Lilly
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Ochola W Ogwang
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Dimitrios Zonidis
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
12
|
Zhou S, Liu DY, Wang S, Tian JS, Loh TP. An efficient method for the synthesis of 2-pyridones via C-H bond functionalization. Chem Commun (Camb) 2020; 56:15020-15023. [PMID: 33185645 DOI: 10.1039/d0cc06834a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method to access N-substituted 2-pyridones via a formal [3+3] annulation of enaminones with acrylates based on RhIII-catalyzed C-H functionalization was developed. Control and deuterated experiments led to a plausible mechanism involving C-H bond cross-coupling and aminolysis cyclization. This strategy provides a short synthesis of structural motifs of N-substituted 2-pyridones.
Collapse
Affiliation(s)
- Shuguang Zhou
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | | | | | | | | |
Collapse
|
13
|
Zhu Y, Chen F, Cheng D, Chen Y, Zhao X, Wei W, Lu Y, Zhao J. Rhodium(III)-Catalyzed Alkenyl C-H Functionalization to Dienes and Allenes. Org Lett 2020; 22:8786-8790. [PMID: 33147030 DOI: 10.1021/acs.orglett.0c03126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An oxyacetamide-directed Rh(III)-catalyzed Z-type alkenyl C-H functionalization through a rare exo-rhodacyle intermediate is described, forming multisubstituted dienes and allenes. A variety of alkenes and propargylic carbonate coupling partners are suitable for this transformation with high regio- and stereoselectivity. The synthetic utility is demonstrated by the selective late-stage modification of the Z-type natural products as well as the synthesis of the unnatural β-amino acid.
Collapse
Affiliation(s)
- Yuelu Zhu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Feng Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Donghui Cheng
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ying Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Yi Lu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
14
|
Abstract
AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives
Collapse
Affiliation(s)
- Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology
| | | |
Collapse
|
15
|
Mies T, Ma TK, Barrett AGM. Syntheses of polyfunctional aromatic compounds from non-aromatic precursors. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Zhang Q, Hu B, Zhao Y, Zhao S, Wang Y, Zhang B, Yan S, Yu F. Synthesis of N
-Sulfonyl Pyrazoles Through Cyclization Reactions of Sulfonyl Hydrazines with Enaminones Promoted by p
-TSA. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiaohe Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Hu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Siyun Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yanqin Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Shengjiao Yan
- School of Chemical Science and Technology; Yunnan University; 650500 Kunming P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| |
Collapse
|
17
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|
18
|
Jia Q, Lan Y, Ye X, Lin Y, Ren Q. Direct access to multi-functionalized benzenes via [4 + 2] annulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes. RSC Adv 2020; 10:29171-29174. [PMID: 35521133 PMCID: PMC9055964 DOI: 10.1039/d0ra05251e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient [4 + 2] benzannulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes was achieved under metal-free reaction conditions selectively delivering a wide range of polyfunctional benzenes in high yields respectively (up to 94% yield). An efficient [4 + 2] benzannulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes was achieved under metal-free reaction conditions selectively delivering a wide range of polyfunctional benzenes in high yields respectively (up to 94% yield).![]()
Collapse
Affiliation(s)
- Qianfa Jia
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Yunfei Lan
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
- P. R. China
| | - Xin Ye
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yinhe Lin
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Qiao Ren
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
19
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Rhodium-catalyzed C H activation/cyclization of enaminones with sulfoxonium ylides toward polysubstituted naphthalenes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Peng F, Zhao Q, Huang W, Liu SJ, Zhong YJ, Mao Q, Zhang N, He G, Han B. Amine-catalyzed and functional group-controlled chemo- and regioselective synthesis of multi-functionalized CF3-benzene via a metal-free process. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02694k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel strategy for the synthesis of CF3-containing multi-substituted benzenes with high chemo- and regioselectivities under metal-free and air-tolerant conditions was established.
Collapse
Affiliation(s)
- Fu Peng
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Nan Zhang
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Gu He
- State Key Laboratory of Biotherapy
- West China Hospital
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|
22
|
Liang G, Rong J, Sun W, Chen G, Jiang Y, Loh TP. Synthesis of Polyaromatic Rings: Rh(III)-Catalyzed [5 + 1] Annulation of Enaminones with Vinyl Esters through C–H Bond Functionalization. Org Lett 2018; 20:7326-7331. [DOI: 10.1021/acs.orglett.8b03284] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaohui Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Gengjia Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
23
|
Zuo Y, He X, Ning Y, Wu Y, Shang Y. Selective Synthesis of Aminoisoquinolines via Rh(III)-Catalyzed C–H/N–H Bond Functionalization of N-Aryl Amidines with Cyclic 2-Diazo-1,3-diketones. J Org Chem 2018; 83:13463-13472. [DOI: 10.1021/acs.joc.8b02286] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Yi Ning
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China
| |
Collapse
|
24
|
Zhao Y, Zheng Q, Yu C, Liu Z, Wang D, You J, Gao G. Rh(iii)-Catalyzed regioselective C–H [4 + 2] C-annulation of vinyl enaminones with alkynes to form polysubstituted salicylaldehydes. Org Chem Front 2018. [DOI: 10.1039/c8qo00759d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sterically congested polysubstituted salicylaldehydes are accessed through a Rh(iii)-catalyzed regioselective vinylic C–H [4 + 2] C-annulation reaction of vinyl enaminones with alkynes.
Collapse
Affiliation(s)
- Yinsong Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qinze Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Chuangui Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Deping Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|